Vortex nucleation by collapsing bubbles in Bose-Einstein condensates

被引:24
作者
Berloff, NG
Barenghi, CF
机构
[1] Univ Cambridge, Dept Appl Math & Theoret Phys, Cambridge CB3 0WA, England
[2] Newcastle Univ, Sch Math & Stat, Newcastle Upon Tyne NE1 7RU, Tyne & Wear, England
基金
英国工程与自然科学研究理事会; 美国国家科学基金会;
关键词
D O I
10.1103/PhysRevLett.93.090401
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Nucleation of vortex rings accompanies the collapse of ultrasound bubbles in superfluids. Using the Gross-Pitaevskii equation for a uniform condensate we elucidate the various stages of the collapse of a stationary spherically symmetric bubble and establish conditions necessary for vortex nucleation. The minimum radius of the stationary bubble, whose collapse leads to vortex nucleation, was found to be 28+/-1 healing lengths. The time after which the nucleation becomes possible is determined as a function of the bubble's radius. We show that vortex nucleation takes place in moving bubbles of even smaller radius if the motion makes them sufficiently oblate.
引用
收藏
页码:090401 / 1
页数:4
相关论文
共 24 条
[1]   Watching dark solitons decay into vortex rings in a Bose-Einstein condensate [J].
Anderson, BP ;
Haljan, PC ;
Regal, CA ;
Feder, DL ;
Collins, LA ;
Clark, CW ;
Cornell, EA .
PHYSICAL REVIEW LETTERS, 2001, 86 (14) :2926-2929
[2]   Motions in a Bose condensate: VII. Boundary-layer separation [J].
Berloff, NG ;
Roberts, PH .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (22) :4025-4038
[3]   Evolution of rarefaction pulses into vortex rings [J].
Berloff, NG .
PHYSICAL REVIEW B, 2002, 65 (17) :1-5
[4]   Pade approximations of solitary wave solutions of the Gross-Pitaevskii equation [J].
Berloff, NG .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (05) :1617-1632
[5]   Motion in a Bose condensate: IX. Crow instability of antiparallel vortex pairs [J].
Berloff, NG ;
Roberts, PH .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (47) :10057-10066
[6]   Motion in a Bose condensate: VIII. The electron bubble [J].
Berloff, NG ;
Roberts, PH .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (01) :81-91
[7]   ULTRASONICALLY GENERATED QUANTIZED VORTICITY IN HEII [J].
CAREY, RF ;
ROONEY, JA ;
SMITH, CW .
PHYSICS LETTERS A, 1978, 65 (04) :311-313
[8]   LATE-TIME COARSENING DYNAMICS IN A NEMATIC LIQUID-CRYSTAL [J].
CHUANG, I ;
TUROK, N ;
YURKE, B .
PHYSICAL REVIEW LETTERS, 1991, 66 (19) :2472-2479
[9]  
Donnelly R. J., 1991, QUANTIZED VORTICES H, V2
[10]   CAVITATION IN LIQUID HELIUM [J].
FINCH, RD ;
RUDNICK, I ;
BARMATZ, M ;
KAGIWADA, R .
PHYSICAL REVIEW, 1964, 134 (6A) :1425-+