Fast reaction limit and large time behavior of solutions to a nonlinear model of sulphation phenomena

被引:91
作者
Guarguaglini, F. R.
Natalini, R. [1 ]
机构
[1] CNR, Inst Applicaz Calcolo M Picone, Viale Policlin 137, I-00161 Rome, Italy
[2] Univ Aquila, Dipartimento Matemat Pura & Applicata, I-67100 Laquila, Italy
关键词
asymptotic time behavior; fast reaction limits; nonlinear parabolic equations; reaction-diffusion systems; sulphation phenomena;
D O I
10.1080/03605300500361438
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate the qualitative behavior of solutions to the initial-boundary value problem on the half-line for a nonlinear system of parabolic equations, which arises to describe the evolution of the chemical reaction of sulphur dioxide with the surface of calcium carbonate stones. We show that, both in the fast reaction limit and for large times, the solutions of this problem are well described in terms of the solutions to a suitable one phase Stefan problem on the same domain.
引用
收藏
页码:163 / 189
页数:27
相关论文
共 25 条
[1]   A mathematical model of sulphite chemical aggression of limestones with high permeability.: Part I.: Modeling and qualitative analysis [J].
Ali, Giuseppe ;
Furuholt, Vidar ;
Natalini, Roberto ;
Torcicollo, Isabella .
TRANSPORT IN POROUS MEDIA, 2007, 69 (01) :109-122
[2]  
[Anonymous], 2003, 19 IAC
[3]   A mathematical model for the sulphur dioxide aggression to calcium carbonate stones: Numerical approximation and asymptotic analysis [J].
Aregba-Driollet, D ;
Diele, F ;
Natalini, R .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2004, 64 (05) :1636-1667
[4]  
Belhadj M, 2003, ASYMPTOTIC ANAL, V34, P41
[5]  
BORRELLI E, 2004, 10 INT C DET CONS ST, V2
[6]  
Corrias L., 2004, MILAN J MATH, V72, P1, DOI DOI 10.1007/s00032-003-0026-x
[7]   Mathematical analysis of a model or the initiation of angiogenesis [J].
Fontelos, MA ;
Friedman, A ;
Hu, B .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2002, 33 (06) :1330-1355
[8]   Global existence of solutions to a nonlinear model of sulphation phenomena in calcium carbonate stones [J].
Guarguaglini, FR ;
Natalini, R .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2005, 6 (03) :477-494
[9]   The fast reaction limit for a reaction-diffusion system [J].
Hilhorst, D ;
vanderHout, R ;
Peletier, LA .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1996, 199 (02) :349-373
[10]  
Horstmann D., 2003, From 1970 until present: the Keller-Segel model in chemotaxis and its consequences, V105, P1