Hot metal temperature prediction in blast furnace using advanced model based on fuzzy logic tools

被引:53
作者
Martin, R. D.
Obeso, F.
Mochon, J.
Barea, R.
Jimenez, J.
机构
[1] Ctr Nacl Invest Met, E-28040 Madrid, Spain
[2] Arcelor, Verina 33208, Gijon, Spain
关键词
blast furnace; fuzzy logic; hot metal temperature; simulation; prediction;
D O I
10.1179/174328107X155358
中图分类号
TF [冶金工业];
学科分类号
0806 ;
摘要
The present work presents a model based on fuzzy logic tools to predict and simulate the hot metal temperature in a blast furnace (BF). As input variables this model uses the control variables of a current BF such as moisture, pulverised coal injection, oxygen addition, mineral/coke ratio and blast volume, and it yields as a result of the hot metal temperature. The variables employed to develop the model have been obtained from data supplied by current sensors of a Spanish BF In the model training stage the adaptive neurofuzzy inference system and the subtractive clustering algorithms have been used.
引用
收藏
页码:241 / 247
页数:7
相关论文
共 19 条
[1]  
ANDERSON A, 1989, NEUROCOMPUTING FDN R, P729
[2]  
[Anonymous], 2004, FUZZ LOG TOOLB US GU
[3]  
FALZETTI M, 2000, 193489282892212 EUR, P24
[4]  
FALZETTI M, 1998, BRUSS BELG SEPT ECSC, P337
[5]  
Gulley N., 1995, FUZZY LOGIC TOOLBOX, V24
[6]  
HENSON MA, 1997, NONLINEAR PROCESS CO, P432
[7]  
Jang J. S. R., 1996, NEUROFUZZY SOFT COMP, P607
[8]   Blast furnace hot metal temperature prediction through neural networks-based models [J].
Jiménez, J ;
Mochón, J ;
de Ayala, JS ;
Obeso, F .
ISIJ INTERNATIONAL, 2004, 44 (03) :573-580
[9]  
LJUNG L, 1999, SYSTEM IDENTIFICATIO, P140
[10]  
MENDEL JM, 1995, IEEE, V83, P221