ON SPIKE SOLUTIONS FOR A SINGULARLY PERTURBED PROBLEM IN A COMPACT RIEMANNIAN MANIFOLD

被引:4
作者
Deng, Shengbing [1 ]
Khemiri, Zied [2 ]
Mahmoudi, Fethi [3 ]
机构
[1] Southwest Univ, Sch Math & Stat, Chongqing 400715, Peoples R China
[2] Univ Tunis El Manar, Dept Math, Fac Sci Tunis, Campus Univ, Tunis El Manar 2092, Tunisia
[3] Univ Chile, Ctr Modelamiento Matemat, Beauchef 851,Edificio Norte Piso 7, Santiago, Chile
基金
中国国家自然科学基金;
关键词
Singular perturbation problems; concentration phenomena; finite dimensional reduction; SEMILINEAR NEUMANN PROBLEM; NONLINEAR ELLIPTIC PROBLEM; LEAST-ENERGY SOLUTIONS; MULTIPEAK SOLUTIONS; PEAK SOLUTIONS; LAYER SOLUTIONS; MEAN-CURVATURE; UP SOLUTIONS; EQUATIONS;
D O I
10.3934/cpaa.2018098
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
] Let (M, g) be a smooth compact riemannian manifold of dimension N >= 2 with constant scalar curvature. We are concerned with the following elliptic problem -epsilon(2)Delta(g)u + u = u(p-1), u > 0, in M. where Delta(g) is the Laplace-Beltrami operator on M, p > 2 if N = 2 and 2 < p < 2N/N - 2 if N >= 3, epsilon is a small real parameter. We prove that there exist a function Xi such that if xi(0) is a stable critical point of Xi(xi) there exists epsilon(0) > 0 such that for any epsilon is an element of (0, epsilon(0)), problem (1) has a solution u(epsilon) which concentrates near xi(0) as epsilon tends to zero. This result generalizes previous works which handle the case where the scalar curvature function of (M, g) has non-degenerate critical points.
引用
收藏
页码:2063 / 2084
页数:22
相关论文
共 28 条
[1]   On the multiplicity of solutions of a nonlinear elliptic problem on Riemannian manifolds [J].
Benci, Vieri ;
Bonanno, Claudio ;
Micheletti, Anna Maria .
JOURNAL OF FUNCTIONAL ANALYSIS, 2007, 252 (02) :464-489
[2]   Singularly perturbed nonlinear elliptic problems on manifolds [J].
Byeon, J ;
Park, J .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2005, 24 (04) :459-477
[3]   Multipeak solutions for some singularly perturbed nonlinear elliptic problems on Riemannian manifolds [J].
Dancer, E. N. ;
Micheletti, A. M. ;
Pistoia, A. .
MANUSCRIPTA MATHEMATICA, 2009, 128 (02) :163-193
[4]   On the role of mean curvature in some singularly perturbed Neumann problems [J].
Del Pino, M ;
Felmer, PL ;
Wei, JC .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1999, 31 (01) :63-79
[5]   Multipeak solutions for asymptotically critical elliptic equations on Riemannian manifolds [J].
Deng, Shengbing .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (03) :859-881
[6]   Blowing-up solutions for the Yamabe equation [J].
Esposito, Pierpaolo ;
Pistoia, Angela .
PORTUGALIAE MATHEMATICA, 2014, 71 (3-4) :249-276
[7]   Existence of multipeak solutions for a semilinear Neumann problem via nonsmooth critical point theory [J].
Grossi, M ;
Pistoia, A ;
Wei, JC .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2000, 11 (02) :143-175
[8]  
Grossi M., 2000, Adv. Differ. Equ, V5, P1397
[9]   Multiple interior peak solutions for some singularly perturbed Neumann problems [J].
Gui, CF ;
Wei, JC .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1999, 158 (01) :1-27
[10]   Multiple boundary peak solutions for some singularly perturbed Neumann problems [J].
Gui, CF ;
Wei, JC ;
Winter, M .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2000, 17 (01) :47-82