Wavelet transforms for homogeneous mixed-norm Triebel-Lizorkin spaces

被引:49
|
作者
Georgiadis, A. G. [1 ]
Johnsen, J. [1 ]
Nielsen, M. [1 ]
机构
[1] Aalborg Univ, Dept Math, Fredrik Bajers Vej 7G, DK-9220 Aalborg, Denmark
来源
MONATSHEFTE FUR MATHEMATIK | 2017年 / 183卷 / 04期
关键词
Wavelet decomposition; phi-Transform; Littlewood-Paley decomposition; Triebel-Lizorkin spaces; Mixed-norms; Pettis integral; BESOV-SPACES; DECOMPOSITION; DISTRIBUTIONS; OPERATORS; BASES;
D O I
10.1007/s00605-017-1036-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Homogeneous mixed-norm Triebel-Lizorkin spaces are introduced and studied with the use of a discrete wavelet transformation, the so-called phi-transform. This extends the classical phi-transform approach introduced by Frazier and Jawerth to the setting of mixed-norm spaces. Moreover, the theory of the phi-transform is enhanced through a precise definition of the synthesis operator, in terms of a Pettis integral, and a number of rigorous results for this operator. Especially its terms can always be summed in any order, without changing the resulting distribution.
引用
收藏
页码:587 / 624
页数:38
相关论文
共 50 条
  • [1] Wavelet transforms for homogeneous mixed-norm Triebel–Lizorkin spaces
    A. G. Georgiadis
    J. Johnsen
    M. Nielsen
    Monatshefte für Mathematik, 2017, 183 : 587 - 624
  • [2] Stable decomposition of homogeneous Mixed-norm Triebel-Lizorkin spaces
    Nielsen, Morten
    JOURNAL OF APPROXIMATION THEORY, 2023, 295
  • [3] Triebel-Lizorkin sequence spaces are genuine mixed-norm spaces
    Brigham, Dan
    Mitrea, Dorina
    Mitrea, Irina
    Mitrea, Marius
    MATHEMATISCHE NACHRICHTEN, 2013, 286 (5-6) : 503 - 517
  • [4] Identification of anisotropic mixed-norm Hardy spaces and certain homogeneous Triebel-Lizorkin spaces
    Huang, Long
    Liu, Jun
    Yang, Dachun
    Yuan, Wen
    JOURNAL OF APPROXIMATION THEORY, 2020, 258
  • [5] Pseudodifferential operators on mixed-norm Besov and Triebel-Lizorkin spaces
    Georgiadis, A. G.
    Nielsen, M.
    MATHEMATISCHE NACHRICHTEN, 2016, 289 (16) : 2019 - 2036
  • [6] TRIEBEL-LIZORKIN SPACES ON SPACES OF HOMOGENEOUS TYPE
    HAN, YS
    STUDIA MATHEMATICA, 1994, 108 (03) : 247 - 273
  • [7] Anisotropic, Mixed-Norm Lizorkin-Triebel Spaces and Diffeomorphic Maps
    Johnsen, J.
    Hansen, S. Munch
    Sickel, W.
    JOURNAL OF FUNCTION SPACES, 2014, 2014
  • [8] WAVELET CHARACTERIZATION OF WEIGHTED TRIEBEL-LIZORKIN SPACES
    Deng Donggao Xu Ming Yan Lixin (Zhongshan University
    ApproximationTheoryandItsApplications, 2002, (04) : 76 - 92
  • [9] Continuous wavelet transform on Triebel-Lizorkin spaces
    Baison-Olmo, Antonio Luis
    Cruz-Barriguete, Victor Alberto
    Navarro, Jaime
    TURKISH JOURNAL OF MATHEMATICS, 2022, 46 (08) : 3159 - 3170
  • [10] Wavelet characterization of Triebel-Lizorkin spaces for p = ∞ on spaces of homogeneous type and its applications?
    Wang, Fan
    Yang, Dachun
    Yuan, Wen
    JOURNAL OF APPROXIMATION THEORY, 2023, 285