On the Laplacian integral tricyclic graphs

被引:8
|
作者
Huang, Xueyi [1 ]
Huang, Qiongxiang [1 ]
Wen, Fei [1 ]
机构
[1] Xinjiang Univ, Coll Math & Syst Sci, Urumqi, Peoples R China
关键词
tricyclic graph; Laplacian integral graph; algebraic connectivity; 05C50; R-PARTITE GRAPHS; ALGEBRAIC CONNECTIVITY; EIGENVALUES; MATRICES; SPECTRUM;
D O I
10.1080/03081087.2014.936436
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A graph is called Laplacian integral if all its Laplacian eigenvalues are integers. In this paper, we give an edge subdividing theorem for Laplacian eigenvalues of a graph (Theorem 2.1) and characterize a class of k-cyclic graphs whose algebraic connectivity is less than one. Using these results, we determine all the Laplacian integral tricyclic graphs. Furthermore, we show that all the Laplacian integral tricyclic graphs are determined by their Laplacian spectra.
引用
收藏
页码:1356 / 1371
页数:16
相关论文
共 50 条
  • [41] On the Laplacian spectra of token graphs
    Dalfo, C.
    Duque, F.
    Fabila-Monroy, R.
    Fiol, M. A.
    Huemer, C.
    Trujillo-Negrete, A. L.
    Zaragoza Martinez, F. J.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2021, 625 : 322 - 348
  • [42] ON GRAPHS WITH THE LARGEST LAPLACIAN INDEX
    Liu, Bolian
    Chen, Zhibo
    Liu, Muhuo
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2008, 58 (04) : 949 - 960
  • [43] An improved result on Laplacian spectral ratio of connected graphs
    Lin, Zhen
    Miao, Lianying
    JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES, 2021, 42 (04) : 711 - 718
  • [44] ON THE LAPLACIAN SPECTRA OF PRODUCT GRAPHS
    Barik, S.
    Bapat, R. B.
    Pati, S.
    APPLICABLE ANALYSIS AND DISCRETE MATHEMATICS, 2015, 9 (01) : 39 - 58
  • [45] On graphs with the largest Laplacian index
    Bolian Liu
    Zhibo Chen
    Muhuo Liu
    Czechoslovak Mathematical Journal, 2008, 58 : 949 - 960
  • [46] On the Laplacian index of tadpole graphs
    Braga, Rodrigo O.
    Veloso, Bruno S.
    SPECIAL MATRICES, 2024, 12 (01):
  • [47] On the spectra of tricyclic graphs
    Liu, Ruifang
    Jia, Huicai
    Shu, Jinlong
    ARS COMBINATORIA, 2011, 100 : 19 - 32
  • [48] Bounds on Laplacian eigenvalues related to total and signed domination of graphs
    Shi, Wei
    Kang, Liying
    Wu, Suichao
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2010, 60 (02) : 315 - 325
  • [49] 'Hubs-repelling' Laplacian and related diffusion on graphs/networks
    Estrada, Ernesto
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2020, 596 (596) : 256 - 280
  • [50] Sign-changing diagonal perturbations of Laplacian matrices of graphs
    Stehlik, Petr
    Vanek, Petr
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2017, 531 : 64 - 82