On the Laplacian integral tricyclic graphs

被引:8
|
作者
Huang, Xueyi [1 ]
Huang, Qiongxiang [1 ]
Wen, Fei [1 ]
机构
[1] Xinjiang Univ, Coll Math & Syst Sci, Urumqi, Peoples R China
关键词
tricyclic graph; Laplacian integral graph; algebraic connectivity; 05C50; R-PARTITE GRAPHS; ALGEBRAIC CONNECTIVITY; EIGENVALUES; MATRICES; SPECTRUM;
D O I
10.1080/03081087.2014.936436
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A graph is called Laplacian integral if all its Laplacian eigenvalues are integers. In this paper, we give an edge subdividing theorem for Laplacian eigenvalues of a graph (Theorem 2.1) and characterize a class of k-cyclic graphs whose algebraic connectivity is less than one. Using these results, we determine all the Laplacian integral tricyclic graphs. Furthermore, we show that all the Laplacian integral tricyclic graphs are determined by their Laplacian spectra.
引用
收藏
页码:1356 / 1371
页数:16
相关论文
共 50 条
  • [1] The Laplacian spectral radius of tricyclic graphs with a given girth
    Wang, Chengyong
    Li, Shuchao
    Yan, Lixia
    UTILITAS MATHEMATICA, 2013, 92 : 33 - 46
  • [2] The Laplacian Spread of Tricyclic Graphs
    Chen, Yanqing
    Wang, Ligong
    ELECTRONIC JOURNAL OF COMBINATORICS, 2009, 16 (01)
  • [3] Indecomposable Laplacian integral graphs
    Grone, Robert
    Merris, Russell
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2008, 428 (07) : 1565 - 1570
  • [4] Total Graphs Are Laplacian Integral
    Dolzan, David
    Oblak, Polona
    ALGEBRA COLLOQUIUM, 2022, 29 (03) : 427 - 436
  • [5] On the Laplacian integral (k - 1)-cyclic graphs
    Huang, Xueyi
    Huang, Qiongxiang
    ARS COMBINATORIA, 2015, 119 : 247 - 256
  • [6] On the Laplacian spectral radii of tricyclic graphs
    Liu Mu-huo
    Wei Fu-yi
    Liu, Bolian
    ARS COMBINATORIA, 2014, 114 : 129 - 143
  • [7] Laplacian integral graphs in S(a, b)
    de Lima, Leonardo Silva
    de Abreu, Nair Maria Maia
    Oliveira, Carla Silva
    Alvarez de Freitas, Maria Aguieiras
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2007, 423 (01) : 136 - 145
  • [8] Integral Laplacian graphs with a unique repeated Laplacian eigenvalue, I
    Hameed, Abdul
    Tyaglov, Mikhail
    SPECIAL MATRICES, 2023, 11 (01):
  • [9] On the signless Laplacian spectra of bicyclic and tricyclic graphs
    Liu, Muhuo
    Liu, Bolian
    ARS COMBINATORIA, 2015, 120 : 169 - 180
  • [10] Laplacian integral signed graphs with few cycles
    Wang, Dijian
    Gao, Dongdong
    AIMS MATHEMATICS, 2023, 8 (03): : 7021 - 7031