On the Dirichlet problem in billiard spaces

被引:7
作者
Gabor, Grzegorz [1 ]
机构
[1] Nicholas Copernicus Univ, Fac Math & Comp Sci, Chopina 12-18, PL-87100 Torun, Poland
关键词
Dirichlet problem; State-dependent impulses; BVP; Billiard; EXISTENCE;
D O I
10.1016/j.jmaa.2016.03.072
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The constrained Dirichlet boundary value problem x = f(t,x), x(0) = x(T), is studied in billiard spaces, where impacts occur in boundary points. Therefore we develop the research on impulsive Dirichlet problems with state-dependent impulses. Inspiring simple examples lead to an approach enabling to obtain both the existence and multiplicity results in one dimensional billiards. Several observations concerning the multidimensional case are also given. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:677 / 691
页数:15
相关论文
共 12 条
[1]  
Bainov D.D., 1993, PITMAN MONOGR SURV P, V66
[2]  
BIELAWSKI R, 1992, DYN REPORT, V1, P225
[3]   On existence of solutions to differential equations or inclusions remaining in a prescribed closed subset of a finite-dimensional space [J].
Gabor, G ;
Quincampoix, M .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2002, 185 (02) :483-512
[4]  
Granas A, 2003, Springer Monogr. Math.
[5]  
Hu S., 1965, Theory of Retracts, V3rd ed.
[6]  
Kozlov V. V., 1991, Transl. Math. Monogr., V89
[7]  
Krasnoselskii M. A., 1984, GRUNDLEHREN MATH WIS, V263
[8]   Variational formulation of a damped Dirichlet impulsive problem [J].
Nieto, Juan J. .
APPLIED MATHEMATICS LETTERS, 2010, 23 (08) :940-942
[9]   Variational approach to impulsive differential equations [J].
Nieto, Juan J. ;
O'Regan, Donal .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2009, 10 (02) :680-690
[10]   A new approach to BVPs with state-dependent impulses [J].
Rachunkova, Irena ;
Tomecek, Jan .
BOUNDARY VALUE PROBLEMS, 2013,