Visualization of cytoskeletal elements by the atomic force microscope

被引:50
作者
Berdyyeva, T
Woodworth, CD
Sokolov, I [1 ]
机构
[1] Clarkson Univ, Dept Phys, Potsdam, NY 13699 USA
[2] Clarkson Univ, Dept Biol, Potsdam, NY 13699 USA
基金
美国国家科学基金会;
关键词
actin; cytoskeleton; intermediate filaments; epithelial cells; limit of resolution; atomic force microscopy;
D O I
10.1016/j.ultramic.2004.09.008
中图分类号
TH742 [显微镜];
学科分类号
摘要
We describe a novel application of atomic force microscopy (AFM) to directly visualize cyloskeletal fibers in human foreskin epithelial cells. The nonionic detergent Triton X-100 in a low concentration was used 10 remove the membrane. soluble proteins. and organelles from the cell. The remaining cytoskeleton can then be directly visualized in either liquid or air-dried ambient conditions. These two types of scanning provide complimentary information. Scanning in liquid visualizes the surface filaments of the cytoskeleton, whereas scanning in air shows both the surface filaments and the total "volume" of the cytoskeletal fibers. The smallest fibers observed were ca. 50 nm in diameter. The lateral resolution of this technique was ca.20nm, which can be increased to a single nanometer level by choosing sharp-er AFM lips. Because the AFM is a true 3D technique, we are able to quantify the observed cytoskeleton by its density and volume. The types of fibers call be identified by their size, similar to electron microscopy. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:189 / 198
页数:10
相关论文
共 34 条
[1]   New insight into cellulose structure by atomic force microscopy shows the Iα crystal phase at near-atomic resolution [J].
Baker, AA ;
Helbert, W ;
Sugiyama, J ;
Miles, MJ .
BIOPHYSICAL JOURNAL, 2000, 79 (02) :1139-1145
[2]   Extracellular matrix- and cytoskeleton-dependent changes in cell shape and stiffness [J].
Bhadriraju, K ;
Hansen, LK .
EXPERIMENTAL CELL RESEARCH, 2002, 278 (01) :92-100
[3]   Comparative atomic force and scanning electron microscopy: An investigation on fenestrated endothelial cells in vitro [J].
Braet, F ;
Kalle, WHJ ;
DeZanger, RB ;
DeGrooth, BG ;
Raap, AK ;
Tanke, HJ ;
Wisse, E .
JOURNAL OF MICROSCOPY-OXFORD, 1996, 181 :10-17
[4]   A comparative atomic force microscopy study on living skin fibroblasts and liver endothelial cells [J].
Braet, F ;
de Zanger, R ;
Seynaeve, C ;
Baekeland, M ;
Wisse, E .
JOURNAL OF ELECTRON MICROSCOPY, 2001, 50 (04) :283-290
[5]   Observation of changes in bacterial cell morphology using tapping mode atomic force microscopy [J].
Camesano, TA ;
Natan, MJ ;
Logan, BE .
LANGMUIR, 2000, 16 (10) :4563-4572
[6]   Evaluation of fracture planes and cell morphology in complementary fractures of cultured cells in the frozen-hydrated state by field-emission secondary electron microscopy: Feasibility for ion localization and fluorescence imaging studies [J].
Chandra, S ;
Morrison, GH .
JOURNAL OF MICROSCOPY-OXFORD, 1997, 186 :232-245
[7]   CYTOSKELETON OF LIVING, UNSTAINED CELLS IMAGED BY SCANNING FORCE MICROSCOPY [J].
CHANG, L ;
KIOUS, T ;
YORGANCIOGLU, M ;
KELLER, D ;
PFEIFFER, J .
BIOPHYSICAL JOURNAL, 1993, 64 (04) :1282-1286
[8]   Evidence for direct interaction between actin and the cystic fibrosis transmembrane conductance regulator [J].
Chasan, B ;
Geisse, NA ;
Pedatella, K ;
Wooster, DG ;
Teintze, M ;
Carattino, MD ;
Goldmann, WH ;
Cantiello, HF .
EUROPEAN BIOPHYSICS JOURNAL WITH BIOPHYSICS LETTERS, 2002, 30 (08) :617-624
[9]   Deformation and collapse of microtubules on the nanometer scale [J].
de Pablo, PJ ;
Schaap, IAT ;
MacKintosh, FC ;
Schmidt, CF .
PHYSICAL REVIEW LETTERS, 2003, 91 (09)
[10]   In situ imaging of detergent-resistant membranes by atomic force microscopy [J].
Giocondi, MC ;
Vié, V ;
Lesniewska, E ;
Goudonnet, JP ;
Le Grimellec, C .
JOURNAL OF STRUCTURAL BIOLOGY, 2000, 131 (01) :38-43