Sparse regularization for EIT reconstruction incorporating structural information derived from medical imaging

被引:19
作者
Gong, Bo [1 ,2 ]
Schullcke, Benjamin [1 ,2 ]
Krueger-Ziolek, Sabine [1 ,2 ]
Mueller-Lisse, Ullrich [2 ]
Moeller, Knut [1 ]
机构
[1] Furtwangen Univ, Inst Tech Med, Villingen Schwenningen, Germany
[2] Univ Munich, Dept Radiol, Munich, Germany
关键词
electrical impedance tomography; structure-based regularization; group lasso; inverse problem; ELECTRICAL-IMPEDANCE TOMOGRAPHY; TISSUE RESISTIVITIES; IMAGES;
D O I
10.1088/0967-3334/37/6/843
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Electrical impedance tomography (EIT) reconstructs the conductivity distribution of a domain using electrical data on its boundary. This is an ill-posed inverse problem usually solved on a finite element mesh. For this article, a special regularization method incorporating structural information of the targeted domain is proposed and evaluated. Structural information was obtained either from computed tomography images or from preliminary EIT reconstructions by a modified k-means clustering. The proposed regularization method integrates this structural information into the reconstruction as a soft constraint preferring sparsity in group level. A first evaluation with Monte Carlo simulations indicated that the proposed solver is more robust to noise and the resulting images show fewer artifacts. This finding is supported by real data analysis. The structure based regularization has the potential to balance structural a priori information with data driven reconstruction. It is robust to noise, reduces artifacts and produces images that reflect anatomy and are thus easier to interpret for physicians.
引用
收藏
页码:843 / 862
页数:20
相关论文
共 23 条
[1]   Uses and abuses of EIDORS: an extensible software base for EIT [J].
Adler, A ;
Lionheart, WRB .
PHYSIOLOGICAL MEASUREMENT, 2006, 27 (05) :S25-S42
[2]   GREIT: a unified approach to 2D linear EIT reconstruction of lung images [J].
Adler, Andy ;
Arnold, John H. ;
Bayford, Richard ;
Borsic, Andrea ;
Brown, Brian ;
Dixon, Paul ;
Faes, Theo J. C. ;
Frerichs, Inez ;
Gagnon, Herve ;
Gaerber, Yvo ;
Grychtol, Bartlomiej ;
Hahn, Guenter ;
Lionheart, William R. B. ;
Malik, Anjum ;
Patterson, Robert P. ;
Stocks, Janet ;
Tizzard, Andrew ;
Weiler, Norbert ;
Wolf, Gerhard K. .
PHYSIOLOGICAL MEASUREMENT, 2009, 30 (06) :S35-S55
[3]   Optimization with Sparsity-Inducing Penalties [J].
Bach, Francis ;
Jenatton, Rodolphe ;
Mairal, Julien ;
Obozinski, Guillaume .
FOUNDATIONS AND TRENDS IN MACHINE LEARNING, 2012, 4 (01) :1-106
[4]   Use of a priori information in estimating tissue resistivities -: a simulation study [J].
Baysal, U ;
Eyüboglu, BM .
PHYSICS IN MEDICINE AND BIOLOGY, 1998, 43 (12) :3589-3606
[5]   Tissue resistivity estimation in the presence of positional and geometrical uncertainties [J].
Baysal, U ;
Eyüboglu, BM .
PHYSICS IN MEDICINE AND BIOLOGY, 2000, 45 (08) :2373-2388
[6]   Tracking boundary movement and exterior shape modelling in lung EIT imaging [J].
Biguri, A. ;
Grychtol, B. ;
Adler, A. ;
Soleimani, M. .
PHYSIOLOGICAL MEASUREMENT, 2015, 36 (06) :1119-1135
[7]   Distributed optimization and statistical learning via the alternating direction method of multipliers [J].
Boyd S. ;
Parikh N. ;
Chu E. ;
Peleato B. ;
Eckstein J. .
Foundations and Trends in Machine Learning, 2010, 3 (01) :1-122
[8]   ESTIMATION OF TISSUE RESISTIVITIES FROM MULTIPLE-ELECTRODE IMPEDANCE MEASUREMENTS [J].
EYUBOGLU, BM ;
PILKINGTON, TC ;
WOLF, PD .
PHYSICS IN MEDICINE AND BIOLOGY, 1994, 39 (01) :1-17
[9]   Sparse 3D reconstructions in electrical impedance tomography using real data [J].
Gehre, Matthias ;
Kluth, Tobias ;
Sebu, Cristiana ;
Maass, Peter .
INVERSE PROBLEMS IN SCIENCE AND ENGINEERING, 2014, 22 (01) :31-44
[10]   Sparsity reconstruction in electrical impedance tomography: An experimental evaluation [J].
Gehre, Matthias ;
Kluth, Tobias ;
Lipponen, Antti ;
Jin, Bangti ;
Seppanen, Aku ;
Kaipio, Jari P. ;
Maass, Peter .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2012, 236 (08) :2126-2136