NEURAL DECODING USING A NONLINEAR GENERATIVE MODEL FOR BRAIN-COMPUTER INTERFACE

被引:0
|
作者
Dantas, Henrique [1 ]
Kellis, Spencer [2 ]
Mathews, V. John [3 ]
Greger, Bradley [4 ]
机构
[1] Univ Fed Pernambuco, Recife, PE, Brazil
[2] CALTECH, Biol & Biol Engn Div, Pasadena, CA 91125 USA
[3] Univ Utah, Dept Elect & Comp Engn, Pasadena 84109, CA USA
[4] Arizona State Univ, Sch Sch Biologicool Biol & Hlth, Tempe, AZ 85287 USA
来源
2014 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP) | 2014年
关键词
Neural decoding; Brain-Computer Interface; Nonlinear Kalman Filter; MOVEMENTS; CORTEX;
D O I
暂无
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Kalman filters have been used to decode neural signals and estimate hand kinematics in many studies. However, most prior work assumes a linear system model, an assumption that is almost certainly violated by neural systems. In this paper, we show that adding nonlinearities to the decoding algorithm improves the accuracy of tracking hand movements using neural signal acquired via a 32-channel micro-electrocorticographic (mu ECoG) grid placed over the arm and hand representations in the motor cortex. Experimental comparisons indicate that a Kalman filter with a fifth order polynomial generative model relating the hand kinematics signals to the neural signals improved the mean-square tracking performance in the hand movements over a conventional Kalman filter employing a linear system model. This finding is in accord with the current neurophysiological understanding of the decoded signals.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Decoding of intended saccade direction in an oculomotor brain-computer interface
    Jia, Nan
    Brincat, Scott L.
    Salazar-Gomez, Andres F.
    Panko, Mikhail
    Guenther, Frank H.
    Miller, Earl K.
    JOURNAL OF NEURAL ENGINEERING, 2017, 14 (04)
  • [2] Hierarchical Hidden Markov Model for Online Decoding in Brain-Computer Interface
    Souriau, Remi
    Moly, Alexandre
    Martel, Felix
    Struber, Lucas
    Karakas, Serpil
    Juillard, Violaine
    Charvet, Guillaume
    Aksenova, Tetiana
    32ND EUROPEAN SIGNAL PROCESSING CONFERENCE, EUSIPCO 2024, 2024, : 1466 - 1470
  • [3] Neural Decoding for Intracortical Brain-Computer Interfaces
    Dong, Yuanrui
    Wang, Shirong
    Huang, Qiang
    Berg, Rune W.
    Li, Guanghui
    He, Jiping
    CYBORG AND BIONIC SYSTEMS, 2023, 4
  • [4] Magnetoencephalogram-based brain-computer interface for hand-gesture decoding using deep learning
    Bu, Yifeng
    Harrington, Deborah L.
    Lee, Roland R.
    Shen, Qian
    Angeles-Quinto, Annemarie
    Ji, Zhengwei
    Hansen, Hayden
    Hernandez-Lucas, Jaqueline
    Baumgartner, Jared
    Song, Tao
    Nichols, Sharon
    Baker, Dewleen
    Rao, Ramesh
    Lerman, Imanuel
    Lin, Tuo
    Tu, Xin Ming
    Huang, Mingxiong
    CEREBRAL CORTEX, 2023, 33 (14) : 8942 - 8955
  • [5] Meeting brain-computer interface user performance expectations using a deep neural network decoding framework
    Schwemmer, Michael A.
    Skomrock, Nicholas D.
    Sederberg, Per B.
    Ting, Jordyn E.
    Sharma, Gaurav
    Bockbrader, Marcia A.
    Friedenberg, David A.
    NATURE MEDICINE, 2018, 24 (11) : 1669 - +
  • [6] A hybrid autoencoder framework of dimensionality reduction for brain-computer interface decoding
    Ran, Xingchen
    Chen, Weidong
    Yvert, Blaise
    Zhang, Shaomin
    COMPUTERS IN BIOLOGY AND MEDICINE, 2022, 148
  • [7] Neural mechanisms of brain-computer interface control
    Halder, S.
    Agorastos, D.
    Veit, R.
    Hammer, E. M.
    Lee, S.
    Varkuti, B.
    Bogdan, M.
    Rosenstiel, W.
    Birbaumer, N.
    Kuebler, A.
    NEUROIMAGE, 2011, 55 (04) : 1779 - 1790
  • [8] Brain-computer interface paradigms and neural coding
    Tai, Pengrui
    Ding, Peng
    Wang, Fan
    Gong, Anmin
    Li, Tianwen
    Zhao, Lei
    Su, Lei
    Fu, Yunfa
    FRONTIERS IN NEUROSCIENCE, 2024, 17
  • [9] Decoding the Debate: A Comparative Study of Brain-Computer Interface and Neurofeedback
    Mohammad H. Mahrooz
    Farrokh Fattahzadeh
    Shahriar Gharibzadeh
    Applied Psychophysiology and Biofeedback, 2024, 49 : 47 - 53
  • [10] Decoding the Debate: A Comparative Study of Brain-Computer Interface and Neurofeedback
    Mahrooz, Mohammad H.
    Fattahzadeh, Farrokh
    Gharibzadeh, Shahriar
    APPLIED PSYCHOPHYSIOLOGY AND BIOFEEDBACK, 2024, 49 (01) : 47 - 53