DCE-MRI prediction of survival time for patients with glioblastoma multiforme: using an adaptive neuro-fuzzy-based model and nested model selection technique

被引:13
作者
Dehkordi, Azimeh N. V. [1 ]
Kamali-Asl, Alireza [1 ]
Wen, Ning [2 ]
Mikkelsen, Tom [3 ,4 ]
Chetty, Indrin J. [2 ]
Bagher-Ebadian, Hassan [2 ,5 ]
机构
[1] Shahid Beheshti Univ, Dept Radiat Med Engn, Tehran, Iran
[2] Henry Ford Hosp, Dept Radiat Oncol, Detroit, MI 48202 USA
[3] Henry Ford Hosp, Dept Neurosurg, Detroit, MI 48202 USA
[4] Ontario Brain Inst, Toronto, ON, Canada
[5] Oakland Univ, Dept Phys, Rochester, MI USA
关键词
adaptive neuro-fuzzy inference system; dynamic contrast enhanced-MRI; glioblastoma multiforme; pharmacokinetic analysis; survival prediction; CONTRAST-ENHANCED MRI; CEREBRAL BLOOD-VOLUME; TRANSFER-COEFFICIENT; PROGNOSTIC VALUE; PARAMETERS; PERFUSION; PERMEABILITY; GRADE;
D O I
10.1002/nbm.3739
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
This pilot study investigates the construction of an Adaptive Neuro-Fuzzy Inference System (ANFIS) for the prediction of the survival time of patients with glioblastoma multiforme (GBM). ANFIS is trained by the pharmacokinetic (PK) parameters estimated by the model selection (MS) technique in dynamic contrast enhanced-magnetic resonance imaging (DCE-MRI) data analysis, and patient age. DCE-MRI investigations of 33 treatment-naive patients with GBM were studied. Using the modified Tofts model and MS technique, the following physiologically nested models were constructed: Model 1, no vascular leakage (normal tissue); Model 2, leakage without efflux; Model 3, leakage with bidirectional exchange (influx and efflux). For each patient, the PK parameters of the three models were estimated as follows: blood plasma volume (v(p)) for Model 1; v(p) and volume transfer constant (K-trans) for Model 2; v(p), K-trans and rate constant (k(ep)) for Model 3. Using Cox regression analysis, the best combination of the estimated PK parameters, together with patient age, was identified for the design and training of ANFIS. A K-fold cross-validation (K=33) technique was employed for training, testing and optimization of ANFIS. Given the survival time distribution, three classes of survival were determined and a confusion matrix for the correct classification fraction (CCF) of the trained ANFIS was estimated as an accuracy index of ANFIS's performance. Patient age, k(ep) and v(e) (K-trans/k(ep)) of Model 3, and K-trans of Model 2, were found to be the most effective parameters for training ANFIS. The CCF of the trained ANFIS was 84.8%. High diagonal elements of the confusion matrix (81.8%, 90.1% and 81.8% for Class 1, Class 2 and Class 3, respectively), with low off-diagonal elements, strongly confirmed the robustness and high performance of the trained ANFIS for predicting the three survival classes. This study confirms that DCE-MRI PK analysis, combined with the MS technique and ANFIS, allows the construction of a DCE-MRI-based fuzzy integrated predictor for the prediction of the survival of patients with GBM.
引用
收藏
页数:12
相关论文
共 46 条
[1]  
[Anonymous], 1997, IEEE T AUTOM CONTROL, DOI DOI 10.1109/TAC.1997.633847
[2]   A survey of cross-validation procedures for model selection [J].
Arlot, Sylvain ;
Celisse, Alain .
STATISTICS SURVEYS, 2010, 4 :40-79
[3]   Intratumor distribution and test-retest comparisons of physiological parameters quantified by dynamic contrast-enhanced MRI in rat U251 glioma [J].
Aryal, Madhava P. ;
Nagaraja, Tavarekere N. ;
Brown, Stephen L. ;
Lu, Mei ;
Bagher-Ebadian, Hassan ;
Ding, Guangliang ;
Panda, Swayamprava ;
Keenan, Kelly ;
Cabral, Glauber ;
Mikkelsen, Tom ;
Ewing, James R. .
NMR IN BIOMEDICINE, 2014, 27 (10) :1230-1238
[4]   Dynamic Contrast Enhanced MRI Parameters and Tumor Cellularity in a Rat Model of Cerebral Glioma at 7 T [J].
Aryal, Madhava P. ;
Nagaraja, Tavarekere N. ;
Keenan, Kelly A. ;
Bagher-Ebadian, Hassan ;
Panda, Swayamprava ;
Brown, Stephen L. ;
Cabral, Glauber ;
Fenstermacher, Joseph D. ;
Ewing, James R. .
MAGNETIC RESONANCE IN MEDICINE, 2014, 71 (06) :2206-2214
[5]   Dynamic Contrast-Enhanced Magnetic Resonance Imaging-Derived kep as a Potential Biomarker of Matrix Metalloproteinase 9 Expression in Patients With Glioblastoma Multiforme: A Pilot Study [J].
Awasthi, Rishi ;
Pandey, Chandra M. ;
Sahoo, Prativa ;
Behari, Sanjay ;
Kumar, Vijendra ;
Kumar, Shaleen ;
Misra, Shagun ;
Husain, Nuzhat ;
Soni, Priyanka ;
Rathore, Ram K. S. ;
Gupta, Rakesh Kumar .
JOURNAL OF COMPUTER ASSISTED TOMOGRAPHY, 2012, 36 (01) :125-130
[6]   Model selection for DCE-T1 studies in glioblastoma [J].
Bagher-Ebadian, Hassan ;
Jain, Rajan ;
Nejad-Davarani, Siamak P. ;
Mikkelsen, Tom ;
Lu, Mei ;
Jiang, Quan ;
Scarpace, Lisa ;
Arbab, Ali S. ;
Narang, Jayant ;
Soltanian-Zadeh, Hamid ;
Paudyal, Ramesh ;
Ewing, James. R. .
MAGNETIC RESONANCE IN MEDICINE, 2012, 68 (01) :241-251
[7]   Predicting Final Extent of Ischemic Infarction Using Artificial Neural Network Analysis of Multi-Parametric MRI in Patients with Stroke [J].
Bagher-Ebadian, Hassan ;
Jafari-Khouzani, Kourosh ;
Mitsias, Panayiotis D. ;
Lu, Mei ;
Soltanian-Zadeh, Hamid ;
Chopp, Michael ;
Ewing, James R. .
PLOS ONE, 2011, 6 (08)
[8]  
BAGHEREBADIAN H, 2016, MED PHYS 7, V43
[9]   Improved tumor oxygenation and survival in glioblastoma patients who show increased blood perfusion after cediranib and chemoradiation [J].
Batchelor, Tracy T. ;
Gerstner, Elizabeth R. ;
Emblem, Kyrre E. ;
Duda, Dan G. ;
Kalpathy-Cramer, Jayashree ;
Snuderl, Matija ;
Ancukiewicz, Marek ;
Polaskova, Pavlina ;
Pinho, Marco C. ;
Jennings, Dominique ;
Plotkin, Scott R. ;
Chi, Andrew S. ;
Eichler, April F. ;
Dietrich, Jorg ;
Hochberg, Fred H. ;
Lu-Emerson, Christine ;
Iafrate, A. John ;
Ivy, S. Percy ;
Rosen, Bruce R. ;
Loeffler, Jay S. ;
Wen, Patrick Y. ;
Sorensen, A. Greg ;
Jain, Rakesh K. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2013, 110 (47) :19059-19064
[10]   Assessment of Progression-Free-Survival in Glioblastomas by Intratreatment Dynamic Contrast-Enhanced MRI [J].
Bisdas, S. ;
Smrdel, U. ;
Bajrovic, F. F. ;
Surlan-Popovic, K. .
CLINICAL NEURORADIOLOGY, 2016, 26 (01) :39-45