Hermite-Hadamard-type inequalities for interval-valued preinvex functions via Riemann-Liouville fractional integrals

被引:40
|
作者
Sharma, Nidhi [1 ]
Singh, Sanjeev Kumar [1 ]
Mishra, Shashi Kant [1 ]
Hamdi, Abdelouahed [2 ]
机构
[1] Banaras Hindu Univ, Inst Sci, Dept Math, Varanasi 221005, Uttar Pradesh, India
[2] Qatar Univ, Coll Arts & Sci, Dept Math Stat & Phys, POB 2713, Doha, Qatar
关键词
Invex sets; Preinvex functions; Interval-valued functions; Hermite-Hadamard inequalities; Fractional integrals;
D O I
10.1186/s13660-021-02623-w
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we introduce (h(1),h(2))-preinvex interval-valued function and establish the Hermite-Hadamard inequality for preinvex interval-valued functions by using interval-valued Riemann-Liouville fractional integrals. We obtain Hermite-Hadamard-type inequalities for the product of two interval-valued functions. Further, some examples are given to confirm our theoretical results.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Hermite–Hadamard-type inequalities for interval-valued preinvex functions via Riemann–Liouville fractional integrals
    Nidhi Sharma
    Sanjeev Kumar Singh
    Shashi Kant Mishra
    Abdelouahed Hamdi
    Journal of Inequalities and Applications, 2021
  • [2] Hermite-Hadamard-Mercer type inclusions for interval-valued functions via Riemann-Liouville fractional integrals
    Kara, Hasan
    Ali, Muhammad Aamir
    Budak, Huseyin
    TURKISH JOURNAL OF MATHEMATICS, 2022, 46 (06) : 2193 - 2207
  • [3] Hermite-Hadamard-Type Fractional Inclusions for Interval-Valued Preinvex Functions
    Lai, Kin Keung
    Bisht, Jaya
    Sharma, Nidhi
    Mishra, Shashi Kant
    MATHEMATICS, 2022, 10 (02)
  • [4] Hermite-Hadamard-type Inequalities for h-preinvex Interval-Valued Functions via Fractional Integral
    Tan, Yun
    Zhao, Dafang
    Sarikaya, Mehmet Zeki
    INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE SYSTEMS, 2023, 16 (01)
  • [5] FRACTIONAL HERMITE-HADAMARD-TYPE INEQUALITIES FOR INTERVAL-VALUED FUNCTIONS
    Budak, Huseyin
    Tunc, Tuba
    Sarikaya, Mehmet Zeki
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2020, 148 (02) : 705 - 718
  • [6] Hermite-Hadamard type inequality for ψ-Riemann-Liouville fractional integrals via preinvex functions
    Sharma, Nidhi
    Mishra, Shashi Kant
    Hamdi, Abdelouahed
    INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2022, 13 (01): : 3333 - 3345
  • [7] Hermite-Hadamard-type inequalities involving ψ-Riemann-Liouville fractional integrals via s-convex functions
    Zhao, Yong
    Sang, Haiwei
    Xiong, Weicheng
    Cui, Zhongwei
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2020, 2020 (01)
  • [8] Hermite-Hadamard-type inequalities for Riemann-Liouville fractional integrals via two kinds of convexity
    Wang, JinRong
    Li, Xuezhu
    Feckan, Michal
    Zhou, Yong
    APPLICABLE ANALYSIS, 2013, 92 (11) : 2241 - 2253
  • [9] FRACTIONAL QUANTUM HERMITE-HADAMARD-TYPE INEQUALITIES FOR INTERVAL-VALUED FUNCTIONS
    Cheng, Haiyang
    Zhao, Dafang
    Zhao, Guohui
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2023, 31 (09)
  • [10] LR-Preinvex Interval-Valued Functions and Riemann-Liouville Fractional Integral Inequalities
    Khan, Muhammad Bilal
    Noor, Muhammad Aslam
    Abdeljawad, Thabet
    Mousa, Abd Allah A.
    Abdalla, Bahaaeldin
    Alghamdi, Safar M.
    FRACTAL AND FRACTIONAL, 2021, 5 (04)