On the perturbation methods for some nonlinear quantum chemistry models

被引:8
作者
Cances, E [1 ]
Le Bris, C [1 ]
机构
[1] Ecole Natl Ponts & Chaussees, CERMICS, F-77455 Champs Sur Marne 2, France
关键词
D O I
10.1142/S0218202598000044
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The purpose of this article is to (a) give a sound mathematical foundation to perturbation methods for some nonlinear quantum chemistry models. This contributes to the understanding of computations on molecular systems in situ, such as solvated molecules or molecules subjected to a uniform external electric field and (b) prove in the latter setting a result of non-existence of solutions to the Thomas-Fermi-Von Weizsacker and to the Hartee-Fock equations, which is the nonlinear counterpart of a result by Avron and Herbst.(2).
引用
收藏
页码:55 / 94
页数:40
相关论文
共 20 条
[1]   RAYLEIGH-SCHRODINGER PERTURBATION-THEORY FOR NONLINEAR SCHRODINGER-EQUATIONS WITH LINEAR PERTURBATION [J].
ANGYAN, JG .
INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 1993, 47 (06) :469-483
[2]   SPECTRAL AND SCATTERING THEORY OF SCHRODINGER OPERATORS RELATED TO STARK EFFECT [J].
AVRON, JE ;
HERBST, IW .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1977, 52 (03) :239-254
[3]   THERE ARE NO UNFILLED SHELLS IN UNRESTRICTED HARTREE-FOCK THEORY [J].
BACH, V ;
LIEB, EH ;
LOSS, M ;
SOLOVEJ, JP .
PHYSICAL REVIEW LETTERS, 1994, 72 (19) :2981-2983
[4]   SPECTRAL PROPERTIES OF MANY-BODY SCHRODINGER OPERATORS WITH DILATATION-ANALYTIC INTERACTIONS [J].
BALSLEV, E ;
COMBES, JM .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1971, 22 (04) :280-&
[5]   SHARP CONDITION ON THE DECAY OF THE POTENTIAL FOR THE ABSENCE OF A ZERO-ENERGY GROUND-STATE OF THE SCHRODINGER-EQUATION [J].
BENGURIA, RD ;
YARUR, C .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1990, 23 (09) :1513-1518
[6]  
BRANDAS E, 1989, LECT NOTES PHYSICS, V325
[7]  
CANCES E, UNPUB
[8]  
Dreizler R.M., 1990, Density Functional Theory
[9]  
Hehre WJ, Ab Initio Molecular Orbital Theory
[10]   SPECTRAL-ANALYSIS OF N-BODY STARK-HAMILTONIANS [J].
HERBST, I ;
MOLLER, JS ;
SKIBSTED, E .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1995, 174 (02) :261-294