PCM assisted heat pipe cooling system for the thermal management of an LTO cell for high-current profiles

被引:81
作者
Behi, Hamidreza [1 ,2 ]
Karimi, Danial [1 ,2 ]
Gandoman, Foad Heidari [1 ,2 ]
Akbarzadeh, Mohsen [1 ,2 ]
Khaleghi, Sahar [1 ,2 ]
Kalogiannis, Theodoros [1 ,2 ]
Hosen, Md Sazzad [1 ,2 ]
Jaguemont, Joris [1 ,2 ]
Van Mierlo, Joeri [1 ,2 ]
Berecibar, Maitane [1 ,2 ]
机构
[1] Vrije Univ Brussel, Res Grp MOBI Mobil Logist & Automot Technol Res C, Pl Laan 2, B-1050 Brussels, Belgium
[2] Flanders Make, B-3001 Heverlee, Belgium
基金
欧盟地平线“2020”;
关键词
Lithium-titanate (LTO) battery; Thermal management system (TMS); Heat pipe; Phase change material (PCM); Computational fluid dynamic (CFD); PHASE-CHANGE MATERIAL; LITHIUM-ION BATTERY; PERFORMANCE; TEMPERATURE; EXCHANGER; MODEL; PACK;
D O I
10.1016/j.csite.2021.100920
中图分类号
O414.1 [热力学];
学科分类号
摘要
This paper presents the concept of a passive thermal management system (TMS), including natural convection, heat pipe, and phase change material (PCM) for electric vehicles. Experimental and numerical tests are described to predict the thermal behavior of a lithium-titanate (LTO) battery cell in a high current discharging process. Details of various thermal management techniques are discussed and compared with each other. The mathematical models are solved by COMSOL Multiphysics (R), the commercial computational fluid dynamics (CFD) software. The simulation results are validated against experimental data with an acceptable error range. Results indicate that the maximum cell temperature for the cooling strategies of natural convection, heat pipe, and PCM assisted heat pipe reaches 56 degrees C, 46.3 degrees C, and 33.2 degrees C, respectively. It is found that the maximum cell temperature experienced a 17.3% and 40.7% reduction by heat pipe and PCM assisted heat pipe cooling system compared with natural convection.
引用
收藏
页数:14
相关论文
共 56 条
  • [1] Capacity fade modelling of lithium-ion battery under cyclic loading conditions
    Ashwin, T. R.
    Chung, Yongmann M.
    Wang, Jihong
    [J]. JOURNAL OF POWER SOURCES, 2016, 328 : 586 - 598
  • [2] Behi H., 2015, EXPT NUMERICAL STUDY
  • [3] Novel thermal management methods to improve the performance of the Li-ion batteries in high discharge current applications
    Behi, Hamidreza
    Karimi, Danial
    Jaguemont, Joris
    Gandoman, Foad Heidari
    Kalogiannis, Theodoros
    Berecibar, Maitane
    Van Mierlo, Joeri
    [J]. ENERGY, 2021, 224
  • [4] Heat pipe air-cooled thermal management system for lithium-ion batteries: High power applications
    Behi, Hamidreza
    Behi, Mohammadreza
    Karimi, Danial
    Jaguemont, Joris
    Ghanbarpour, Morteza
    Behnia, Masud
    Berecibar, Maitane
    Van Mierlo, Joeri
    [J]. APPLIED THERMAL ENGINEERING, 2021, 183 (183)
  • [5] Thermal management analysis using heat pipe in the high current discharging of lithium-ion battery in electric vehicles
    Behi, Hamidreza
    Karimi, Danial
    Behi, Mohammadreza
    Jaguemont, Joris
    Ghanbarpour, Morteza
    Behnia, Masud
    Berecibar, Maitane
    Van Mierlo, Joeri
    [J]. JOURNAL OF ENERGY STORAGE, 2020, 32
  • [6] A new concept of thermal management system in Li-ion battery using air cooling and heat pipe for electric vehicles
    Behi, Hamidreza
    Karimi, Danial
    Behi, Mohammadreza
    Ghanbarpour, Morteza
    Jaguemont, Joris
    Sokkeh, Mohsen Akbarzadeh
    Gandoman, Foad Heidari
    Berecibar, Maitane
    Van Mierlo, Joeri
    [J]. APPLIED THERMAL ENGINEERING, 2020, 174
  • [7] Investigation of PCM-assisted heat pipe for electronic cooling
    Behi, Hamidreza
    Ghanbarpour, Morteza
    Behi, Mohammadreza
    [J]. APPLIED THERMAL ENGINEERING, 2017, 127 : 1132 - 1142
  • [8] Experimental and numerical investigation on hydrothermal performance of nanofluids in micro-tubes
    Behi, M.
    Shakorian-Poor, M.
    Mirmohammadi, S. A.
    Behi, H.
    Rubio, J. I.
    Nikkam, N.
    Farzaneh-Gord, M.
    Gan, Y.
    Behnia, M.
    [J]. ENERGY, 2020, 193 : 290 - 302
  • [9] Behi M., 2012, VISCOSITY STABILITY, V140
  • [10] Behi M., 2014, OPTIMIZED ENERGY REC, DOI [10.1115/POWER2014-32017, DOI 10.1115/POWER2014-32017]