Phase-amplitude coupling in neuronal oscillator networks

被引:9
作者
Qin, Yuzhen [1 ]
Menara, Tommaso [1 ]
Bassett, Danielle S. [2 ,3 ]
Pasqualetti, Fabio [1 ]
机构
[1] Univ Calif Riverside, Dept Mech Engn, Riverside, CA 92521 USA
[2] Univ Penn, Dept Elect & Syst Engn, Dept Phys & Astron, Dept Bioengn,Dept Neurol,Dept Psychiat, Philadelphia, PA 19104 USA
[3] Santa Fe Inst, Santa Fe, NM 87501 USA
来源
PHYSICAL REVIEW RESEARCH | 2021年 / 3卷 / 02期
基金
美国国家科学基金会;
关键词
GAMMA OSCILLATIONS; WORKING-MEMORY; THETA; SYNCHRONIZATION; INTERNEURONS; COORDINATION; HIPPOCAMPUS; ENTRAINMENT; RHYTHMS; CORTEX;
D O I
10.1103/PhysRevResearch.3.023218
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Cross-frequency phase-amplitude coupling (PAC) describes the phenomenon where the power of a highfrequency oscillation evolves with the phase of a low-frequency one. It has been widely observed in the brain and linked to various brain functions. In this paper, we show that Stuart-Landau oscillators coupled in a nonlinear fashion can give rise to PAC in two commonly accepted architectures, namely, (1) a high-frequency neural oscillation driven by an external low-frequency input and (2) two interacting local oscillations with distinct, locally generated frequencies. We characterize the parameters that affect PAC behavior, thus providing insight on this phenomenon observed in neuronal networks. Inspired by some empirical studies, we further present an interconnection structure for brain regions wherein cross-region interactions are established only by lowfrequency oscillations. We then demonstrate that low-frequency phase synchrony can integrate high-frequency activities regulated by local PAC and control the direction of information flow between distant regions.
引用
收藏
页数:8
相关论文
共 50 条
[41]   Magnetoencephalography detects phase-amplitude coupling in Parkinson's disease [J].
Tanaka, Masataka ;
Yanagisawa, Takufumi ;
Fukuma, Ryohei ;
Tani, Naoki ;
Oshino, Satoru ;
Mihara, Masahito ;
Hattori, Noriaki ;
Kajiyama, Yuta ;
Hashimoto, Ryota ;
Ikeda, Manabu ;
Mochizuki, Hideki ;
Kishima, Haruhiko .
SCIENTIFIC REPORTS, 2022, 12 (01)
[42]   Phase- targeted stimulation modulates phase-amplitude coupling in the motor cortex of the human brain [J].
Salimpour, Yousef ;
Mills, Kelly A. ;
Hwang, Brian Y. ;
Anderson, William S. .
BRAIN STIMULATION, 2022, 15 (01) :152-163
[43]   Phase-Amplitude Coupling and Interlaminar Synchrony Are Correlated in Human Neocortex [J].
McGinn, Ryan J. ;
Valiante, Taufik A. .
JOURNAL OF NEUROSCIENCE, 2014, 34 (48) :15923-15930
[44]   Discriminating Valid from Spurious Indices of Phase-Amplitude Coupling [J].
Jensen, Ole ;
Spaak, Eelke ;
Park, Hyojin .
ENEURO, 2016, 3 (06)
[45]   Rhythmic Temporal Cues Coordinate Cross-frequency Phase-amplitude Coupling during Memory Encoding [J].
Townsend, Paige Hickey ;
Jones, Alexander ;
Patel, Aniruddh D. ;
Race, Elizabeth .
JOURNAL OF COGNITIVE NEUROSCIENCE, 2024, 36 (10) :2100-2116
[46]   Noninvasive Focused Ultrasound Stimulation Can Modulate Phase-Amplitude Coupling between Neuronal Oscillations in the Rat Hippocampus [J].
Yuan, Yi ;
Yan, Jiaqing ;
Ma, Zhitao ;
Li, Xiaoli .
FRONTIERS IN NEUROSCIENCE, 2016, 10
[47]   Phase-amplitude coupling during auditory steady-state stimulation: a methodological review [J].
Mockevicius, Aurimas ;
Griskova-Bulanova, Inga .
REVIEWS IN THE NEUROSCIENCES, 2025, 36 (06) :577-586
[48]   Children with Autism Spectrum Disorder Demonstrate Regionally Specific Altered Resting-State Phase-Amplitude Coupling [J].
Port, Russell G. ;
Dipiero, Marissa A. ;
Ku, Matthew ;
Liu, Song ;
Blaskey, Lisa ;
Kuschner, Emily S. ;
Edgar, J. Christopher ;
Roberts, Timothy P. L. ;
Berman, Jeffrey, I .
BRAIN CONNECTIVITY, 2019, 9 (05) :425-436
[49]   Attention Decreases Phase-Amplitude Coupling, Enhancing Stimulus Discriminability in Cortical Area MT [J].
Esghaei, Moein ;
Daliri, Mohammad Reza ;
Treue, Stefan .
FRONTIERS IN NEURAL CIRCUITS, 2015, 9
[50]   How to design optimal brain stimulation to modulate phase-amplitude coupling? [J].
Duchet, Benoit ;
Bogacz, Rafal .
JOURNAL OF NEURAL ENGINEERING, 2024, 21 (04)