New Group Chain Acceptance Sampling Plans (NGChSP-1) using Minimum Angle Method for Generalized Exponential Distribution

被引:4
作者
Teh, Mohd Azri Pawan [1 ]
Aziz, Nazrina [1 ,2 ]
Zain, Zakiyah [1 ,3 ]
机构
[1] Univ Utara Malaysia, Coll Arts & Sci, Sch Quantitat Sci SQS, Sintok 06010, Kedah Darul Ama, Malaysia
[2] Univ Utara Malaysia, Coll Arts & Sci, Sch Quantitat Sci SQS, Inst Strateg Ind Decis Modelling ISIDM, Sintok 06010, Kedah Darul Ama, Malaysia
[3] Univ Utara Malaysia, Ctr Testing Measurement & Appraisal CeTMA, Sintok 06010, Kedah Darul Ama, Malaysia
来源
SAINS MALAYSIANA | 2021年 / 50卷 / 04期
关键词
Generalized exponential distribution; minimum angle method; new group chain acceptance sampling plans (NGChSP-1);
D O I
10.17576/jsm-2021-5004-22
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The established group chain acceptance sampling plans (GChSP-1) functions with five acceptance criteria, while the modified group of chain acceptance sampling plans (MGChSP-1) operates with three acceptance criteria. Since the acceptance criteria affect the performances of the sampling plans, therefore, this article suggests a balanced approach by introducing a new group of chain acceptance sampling plans (NGChSP-1), where it functions with four acceptance criteria. The NGChSP-1 is developed by using minimum angle method which caters for producer's and consumer's risks. The generalized exponential distribution is selected as the lifetime distribution and the simulation for the NGChSP-1 is conducted at various values of design parameters using the Scilab programming. The finding shows that the optimal number of groups and the corresponding smallest theta for NGChSP-1 are smaller compared to those for the GChSP-1. For illustration purposes, the NGChSP-1 is then applied to real data of air conditioning equipment.
引用
收藏
页码:1121 / 1129
页数:9
相关论文
共 14 条
[1]  
Aslam M., 2008, J STAT, V15, P26
[2]   Time Truncated Group Acceptance Sampling Plans for Generalized Exponential Distribution [J].
Aslam, Muhammad ;
Kundu, Debasis ;
Jun, Chi-Hyuck ;
Ahmad, Munir .
JOURNAL OF TESTING AND EVALUATION, 2011, 39 (04) :671-677
[3]   TRUNCATED LIFE TESTS IN THE EXPONENTIAL CASE [J].
EPSTEIN, B .
ANNALS OF MATHEMATICAL STATISTICS, 1954, 25 (03) :555-564
[4]  
Mughal A. R., 2018, A family of group chain acceptance sampling plans based on truncated life test
[5]  
Mughal AR, 2016, SAINS MALAYS, V45, P1763
[6]  
Nelson W.B, 1982, APPL LIFE DATA ANAL, P433
[7]  
OConnor A.N, 2016, PROBABILITY DISTRIBU, P40
[8]  
Ramaswamy A.R.S., 2012, INT J COMPUTATIONAL, V2, P1402
[9]  
Ramaswamy A. R. S., 2013, AM J MATH STAT, V3, P227
[10]  
Rao G. S, 2010, EC QUALITY CONTROL, V24, P75