Improving thermoelectric energy harvesting efficiency by using graphene

被引:11
作者
Usman, Muhammad [1 ,2 ]
Kim, In-Ho [1 ]
Jung, Hyung-Jo [1 ]
机构
[1] Korea Adv Inst Sci & Technol, Dept Civil & Environm Engn, Daejeon 34141, South Korea
[2] Natl Univ Sci & Technol, Sch Civil & Environm Engn, Sect H-12, Islamabad, Pakistan
来源
AIP ADVANCES | 2016年 / 6卷 / 05期
基金
新加坡国家研究基金会;
关键词
THERMAL-CONDUCTIVITY;
D O I
10.1063/1.4953237
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
This study is aimed at enhancing the efficiency of a thermoelectric (TE) energy harvesting system by using a thick graphene layer. This method is a simple yet effective way to increase the temperature gradient across a conventional TE module by accelerating heat dissipation on the cold side of the system. Aqueous dispersions of graphene were used to prepare a 112-mu m thick graphene layer on the cold side of the TE system with aluminum as the substrate material. The maximum efficiency of the proposed system was improved by 25.45 %, as compared to the conventional TE system, which does not have a graphene layer. Additionally, the proposed system shows very little performance deterioration (2.87 %) in the absence of enough air flow on the cold side of the system, compared to the case of the conventional system (10.59 %). Hence, the proposed system, when coupled with the latest research on high performance TE materials, presents a groundbreaking improvement in the practical application of the TE energy harvesting systems. (C) 2016 Author(s).
引用
收藏
页数:7
相关论文
共 13 条
[1]  
Ahn HS, 2014, SCI REPORTS, V4, P1
[2]   Superior thermal conductivity of single-layer graphene [J].
Balandin, Alexander A. ;
Ghosh, Suchismita ;
Bao, Wenzhong ;
Calizo, Irene ;
Teweldebrhan, Desalegne ;
Miao, Feng ;
Lau, Chun Ning .
NANO LETTERS, 2008, 8 (03) :902-907
[3]  
Balandin AA, 2011, NAT MATER, V10, P569, DOI [10.1038/nmat3064, 10.1038/NMAT3064]
[4]   The rise of graphene [J].
Geim, A. K. ;
Novoselov, K. S. .
NATURE MATERIALS, 2007, 6 (03) :183-191
[5]   Thickness-Dependent Thermal Conductivity of Encased Graphene and Ultrathin Graphite [J].
Jang, Wanyoung ;
Chen, Zhen ;
Bao, Wenzhong ;
Lau, Chun Ning ;
Dames, Chris .
NANO LETTERS, 2010, 10 (10) :3909-3913
[6]  
LEE S, 1995, SEM THERM MEAS MAN S, P48, DOI DOI 10.1109/STHERM.1995.512051
[7]   Wearable Thermoelectric Generators for Body-Powered Devices [J].
Leonov, V. ;
Vullers, R. J. M. .
JOURNAL OF ELECTRONIC MATERIALS, 2009, 38 (07) :1491-1498
[8]   Processable aqueous dispersions of graphene nanosheets [J].
Li, Dan ;
Mueller, Marc B. ;
Gilje, Scott ;
Kaner, Richard B. ;
Wallace, Gordon G. .
NATURE NANOTECHNOLOGY, 2008, 3 (02) :101-105
[9]   Thermal Conductivity of Graphene Laminate [J].
Malekpour, H. ;
Chang, K. -H. ;
Chen, J. -C. ;
Lu, C. -Y. ;
Nika, D. L. ;
Novoselov, K. S. ;
Balandin, A. A. .
NANO LETTERS, 2014, 14 (09) :5155-5161
[10]   On the Significance of the Thermoelectric Figure of Merit Z [J].
Nemir, David ;
Beck, Jan .
JOURNAL OF ELECTRONIC MATERIALS, 2010, 39 (09) :1897-1901