A three-dimensional angle-optimized finite-difference time-domain algorithm

被引:32
|
作者
Wang, SM [1 ]
Teixeira, FL
机构
[1] Ohio State Univ, Electrosci Lab, Columbus, OH 43212 USA
[2] Ohio State Univ, Dept Elect Engn, Columbus, OH 43212 USA
关键词
finite-difference time-domain (FDTD) method; numerical dispersion; optimization;
D O I
10.1109/TMTT.2003.808615
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We present a three-dimensional finite-difference time-domain (FDTD) algorithm to minimize the numerical dispersion error at preassigned angles. Filtering schemes are used to further optimize its frequency response for broad-band simulations. A stability analysis of the resulting FDTD algorithm is also provided. Numerical results show that the dispersion error around any preassigned angle can be reduced significantly in a broad range of frequencies with small computational overhead.
引用
收藏
页码:811 / 817
页数:7
相关论文
共 50 条
  • [1] A finite-difference time-domain algorithm optimized for arbitrary propagation angles
    Wang, SM
    Teixeira, FL
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2003, 51 (09) : 2456 - 2463
  • [2] Finite-difference time-domain method for three-dimensional grid of hexagonal prisms
    Joaquim, M.
    Scheer, S.
    WAVE MOTION, 2016, 63 : 32 - 54
  • [3] Suppression of numerical anisotropy and dispersion with optimized finite-difference time-domain methods
    Sun, GL
    Trueman, CW
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2005, 53 (12) : 4121 - 4128
  • [4] Optimized finite-difference time-domain methods based on the (2,4) stencil
    Sun, GL
    Trueman, CW
    IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2005, 53 (03) : 832 - 842
  • [5] Implicit nonstaggered finite-difference time-domain method
    Wang, SM
    Lee, R
    Teixeira, FL
    MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 2005, 45 (04) : 317 - 319
  • [6] Coarse-grid higher order finite-difference time-domain algorithm with low dispersion errors
    Bendz, Eskil J.
    Fernandes, Hilton G.
    Zuffo, Marcelo K.
    IEEE TRANSACTIONS ON MAGNETICS, 2008, 44 (06) : 1174 - 1177
  • [7] Quantification of the truncation errors in finite-difference time-domain methods
    Sun, G
    Trueman, CW
    CCECE 2003: CANADIAN CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING, VOLS 1-3, PROCEEDINGS: TOWARD A CARING AND HUMANE TECHNOLOGY, 2003, : 1421 - 1424
  • [8] Global modeling of nonlinear circuits using the finite-difference Laguerre time-domain/alternative direction implicit finite-difference time-domain method with stability investigation
    Mirzavand, R.
    Abdipour, A.
    Moradi, G.
    Movahhedi, M.
    INTERNATIONAL JOURNAL OF NUMERICAL MODELLING-ELECTRONIC NETWORKS DEVICES AND FIELDS, 2012, 25 (04) : 400 - 412
  • [9] A spherical higher-order finite-difference time-domain algorithm with perfectly matched layer
    刘亚文
    陈亦望
    张品
    刘宗信
    Chinese Physics B, 2014, 23 (12) : 170 - 180
  • [10] A spherical higher-order finite-difference time-domain algorithm with perfectly matched layer
    Liu Ya-Wen
    Chen Yi-Wang
    Zhang Pin
    Liu Zong-Xin
    CHINESE PHYSICS B, 2014, 23 (12)