Challenges of site-specific selenocysteine incorporation into proteins by Escherichia coli

被引:21
|
作者
Fu, Xian [1 ]
Soll, Dieter [1 ,2 ]
Sevostyanova, Anastasia [1 ]
机构
[1] Yale Univ, Dept Mol Biophys & Biochem, POB 6666, New Haven, CT 06520 USA
[2] Yale Univ, Dept Chem, 225 Prospect St, New Haven, CT 06520 USA
基金
美国国家卫生研究院;
关键词
Protein engineering; selenocysteine; selenoproteins; genetic code expansion; tRNA; SelA; SelB; ELONGATION-FACTOR SELB; TRANSFER-RNA-SYNTHETASE; AMINOACYL-TRANSFER-RNA; FACTOR-TU; CRYSTAL-STRUCTURE; INSERTION-SEQUENCE; EF-TU; GTPASE ACTIVATION; GLYCERALDEHYDE-3-PHOSPHATE DEHYDROGENASE; CATALYTIC-PROPERTIES;
D O I
10.1080/15476286.2018.1440876
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Selenocysteine (Sec), a rare genetically encoded amino acid with unusual chemical properties, is of great interest for protein engineering. Sec is synthesized on its cognate tRNA (tRNA(Sec)) by the concerted action of several enzymes. While all other aminoacyl-tRNAs are delivered to the ribosome by the elongation factor Tu (EF-Tu), Sec-tRNA(Sec) requires a dedicated factor, SelB. Incorporation of Sec into protein requires recoding of the stop codon UGA aided by a specific mRNA structure, the SECIS element. This unusual biogenesis restricts the use of Sec in recombinant proteins, limiting our ability to study the properties of selenoproteins. Several methods are currently available for the synthesis selenoproteins. Here we focus on strategies for in vivo Sec insertion at any position(s) within a recombinant protein in a SECIS-independent manner: (i) engineering of tRNA(Sec) for use by EF-Tu without the SECIS requirement, and (ii) design of a SECIS-independent SelB route.
引用
收藏
页码:461 / 470
页数:10
相关论文
共 50 条
  • [1] Site-Specific Selenocysteine Incorporation into Proteins by Genetic Engineering
    Wang, Yuchuan
    Liu, Pengcheng
    Chang, Jiao
    Xu, Yunping
    Wang, Jiangyun
    CHEMBIOCHEM, 2021, 22 (20) : 2918 - 2924
  • [2] Site-specific Incorporation of Phosphoserine into Recombinant Proteins in Escherichia coli
    Zhu, Phillip
    Mehl, Ryan A.
    Cooley, Richard B.
    BIO-PROTOCOL, 2022, 12 (21):
  • [3] Site-Specific Incorporation of Fluorotyrosines into Proteins in Escherichia coli by Photochemical Disguise
    Wilkins, Bryan J.
    Marionni, Samuel
    Young, Douglas D.
    Liu, Jia
    Wang, Yan
    Di Salvo, Martino L.
    Deiters, Alexander
    Cropp, T. Ashton
    BIOCHEMISTRY, 2010, 49 (08) : 1557 - 1559
  • [4] Update Notice: Site-specific Incorporation of Phosphoserine into Recombinant Proteins in Escherichia coli
    Zhu, Phillip
    Mehl, Ryan A.
    Cooley, Richard B.
    BIO-PROTOCOL, 2023, 13 (17):
  • [5] Site-specific incorporation of unnatural amino acids into urate oxidase in Escherichia coli
    Chen, Mingjie
    Cai, Lei
    Fang, Zhengzhi
    Tian, Hong
    Gao, Xiangdong
    Yao, Wenbing
    PROTEIN SCIENCE, 2008, 17 (10) : 1827 - 1833
  • [6] SITE-SPECIFIC INCORPORATION OF BIOPHYSICAL PROBES INTO PROTEINS
    CORNISH, VW
    BENSON, DR
    ALTENBACH, CA
    HIDEG, K
    HUBBELL, WL
    SCHULTZ, PG
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1994, 91 (08) : 2910 - 2914
  • [7] Site-Specific Incorporation of Selenocysteine by Genetic Encoding as a Photocaged Unnatural Amino Acid
    Welegedara, Adarshi P.
    Adams, Luke A.
    Huber, Thomas
    Graham, Bim
    Otting, Gottfried
    BIOCONJUGATE CHEMISTRY, 2018, 29 (07) : 2257 - 2264
  • [8] Site-specific incorporation of (aminooxy)acetic acid into proteins
    Eisenhauer, BM
    Hecht, SM
    BIOCHEMISTRY, 2002, 41 (38) : 11472 - 11478
  • [9] Site-specific incorporation of citrulline into proteins in mammalian cells
    Mondal, Santanu
    Wang, Shu
    Zheng, Yunan
    Sen, Sudeshna
    Chatterjee, Abhishek
    Thompson, Paul R.
    NATURE COMMUNICATIONS, 2021, 12 (01)
  • [10] SITE-SPECIFIC INCORPORATION OF NOVEL BACKBONE STRUCTURES INTO PROTEINS
    ELLMAN, JA
    MENDEL, D
    SCHULTZ, PG
    SCIENCE, 1992, 255 (5041) : 197 - 200