Symmetry-breaking phenomena in an optimization problem for some nonlinear elliptic equation

被引:12
|
作者
Kurata, K
Shibata, M
Sakamoto, S
机构
[1] Tokyo Metropolitan Univ, Dept Math, Hachioji, Tokyo 1920397, Japan
[2] Tokyo Inst Technol, Dept Math, Meguro Ku, Tokyo 1528551, Japan
来源
APPLIED MATHEMATICS AND OPTIMIZATION | 2004年 / 50卷 / 03期
关键词
symmetry-breaking phenomena; optimization; nonlinear elliptic problem;
D O I
10.1007/s00245-004-0803-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let Omega be a bounded domain in R-n with Lipschitz boundary, lambda>0, and 1less than or equal topless than or equal to(n+2)/(n-2) if ngreater than or equal to3 and 1less than or equal top<+∞ if n=1, 2. Let D be a measurable subset of Ω which belongs to the class C-β={D ⊂ Ω | |D| = β} for the prescribed β ∈ (0, |Ω|). For any D ∈C-β, it is well known that there exists a unique global minimizer u ∈ H-0(1) (Omega), which we denote by u(D), of the functional J(OmegaD)(v) = 1/2 integral(Omega)\delv\(2) dx+lambda/p+1 integral(Omega)\v\(p+1) dx-integral(Omega) chi(D)vdx on H-0(1) (Omega). We consider the optimization problem E-beta,E-Omega = inf(Dis an element ofC beta) J(D)(u(D)) and say that a subset D* is an element ofC(beta) which attains E-beta,E-Omega is an optimal configuration to this problem. In this paper we show the existence, uniqueness and non-uniqueness, and symmetry preserving and symmetry-breaking phenomena of the optimal configuration D* to this optimization problem in various settings.
引用
收藏
页码:259 / 278
页数:20
相关论文
共 50 条