Biosensor based on an oxygen reducing bilirubin oxidase electrode

被引:4
作者
Goebel, G. [1 ]
Dietz, T. [1 ]
Lisdat, F. [1 ]
机构
[1] Univ Appl Sci Wildau, D-15745 Wildau, Germany
来源
PROCEEDINGS OF THE EUROSENSORS XXIII CONFERENCE | 2009年 / 1卷 / 01期
关键词
enzyme sensor; bilirubin oxidase; carbon nanotubes; membran-free; mediator-less; CARBON ELECTRODES; REDUCTION; DIOXYGEN;
D O I
10.1016/j.proche.2009.07.068
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
An oxygen reducing electrode made of bilirubin oxidase and multi-walled carbon nanotubes (BOD-MWCNT-Au electrode) is coupled to enzymes catalysing oxygen-consuming reactions such as glucose oxidase (GOD) to result in a membrane-free bienzyme electrode. The feasibility of such a molecularly assembled system stabilized by covalent linkage has been demonstrated. The electrochemical characterisation of the bienzyme electrode reveals sensitivity to the enzyme substrate. The results indicate that the BOD-electrode provides a suitable platform for sensing analytes for which oxidases of high activity are available.
引用
收藏
页码:273 / 276
页数:4
相关论文
共 50 条
[21]   Fabrication of a Highly Sensitive Glucose Biosensor Based on Immobilization of Osmium Complex and Glucose Oxidase onto Carbon Nanotubes Modified Electrode [J].
Salimi, Abdollah ;
Kavosi, Begard ;
Hallaj, Rahman ;
Babaei, Ali .
ELECTROANALYSIS, 2009, 21 (08) :909-917
[22]   A glucose biosensor based on cytochrome c and glucose oxidase co-entrapped in chitosan- gold nanoparticles modified electrode [J].
Song, Yonghai ;
Liu, Hongyu ;
Wang, Yu ;
Wang, Li .
ANALYTICAL METHODS, 2013, 5 (16) :4165-4171
[23]   Oxygen Electroreduction Catalyzed by Bilirubin Oxidase Does Not Release Hydrogen Peroxide [J].
Pradel Tonda-Mikiela ;
Aurélien Habrioux ;
Susan Boland ;
Karine Servat ;
Sophie Tingry ;
Paul Kavanagh ;
Teko W. Napporn ;
Donal Leech ;
K. Boniface Kokoh .
Electrocatalysis, 2011, 2 :268-272
[24]   Electrochemistry of bilirubin oxidase at carbon nanotubes [J].
W. Zheng ;
H. Y. Zhao ;
H. M. Zhou ;
X. X. Xu ;
M. H. Ding ;
Y. F. Zheng .
Journal of Solid State Electrochemistry, 2010, 14 :249-254
[25]   Direct heterogeneous electron transfer reactions of bilirubin oxidase at a spectrographic graphite electrode [J].
Shleev, S ;
El Kasmi, A ;
Ruzgas, T ;
Gorton, L .
ELECTROCHEMISTRY COMMUNICATIONS, 2004, 6 (09) :934-939
[26]   Electrochemical Oxygen Reduction Catalyzed by Bilirubin Oxidase with the Aid of 2,2′-Azinobis(3-ethylbenzothiaZolin-6-sulfonate) on a MgO-template Carbon Electrode [J].
Tsujimura, Seiya ;
Murata, Kazuki .
ELECTROCHIMICA ACTA, 2015, 180 :555-559
[27]   Monitoring catalytic reaction of bilirubin oxidase and determination of bilirubin and bilirubin oxidase activity by capillary electrophoresis [J].
Zhou, XM ;
Liu, JW ;
Zou, X ;
Chen, JJ .
ELECTROPHORESIS, 1999, 20 (09) :1916-1920
[28]   A Glucose Biosensor based on Horseradish Peroxidase and Glucose Oxidase Co-entrapped in Carbon Nanotubes Modified Electrode [J].
Yang, Han ;
Gong, Coucong ;
Miao, Longfei ;
Xu, Fugang .
INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2017, 12 (06) :4958-4969
[29]   Amperometric glucose biosensor based on adsorption of glucose oxidase at platinum nanoparticle-modified carbon nanotube electrode [J].
Tang, H ;
Chen, JH ;
Yao, SZ ;
Nie, LH ;
Deng, GH ;
Kuang, YF .
ANALYTICAL BIOCHEMISTRY, 2004, 331 (01) :89-97
[30]   Enhanced two-electrode photoelectrochemical biosensing platform amplified by bilirubin oxidase labelling [J].
Lu, Yibin ;
Lu, Xueyu ;
Gu, Shiting ;
Shi, Xiao-Mei ;
Fan, Gao-Chao .
SENSORS AND ACTUATORS B-CHEMICAL, 2021, 343