A MODIFIED PROOF OF PULLBACK ATTRACTORS IN A SOBOLEV SPACE FOR STOCHASTIC FITZHUGH-NAGUMO EQUATIONS

被引:75
|
作者
Li, Yangrong [1 ]
Yin, Jinyan [1 ]
机构
[1] Southwest Univ, Sch Math & Stat, Chongqing 400715, Peoples R China
来源
关键词
Random dynamical system; stochastic FitzHugh-Nagumo equations; pullback attractors; bi-spatial attractors; truncation method; REACTION-DIFFUSION EQUATIONS; DEGENERATE PARABOLIC EQUATIONS; H-1-RANDOM ATTRACTORS; GLOBAL ATTRACTORS; EXISTENCE; REGULARITY; SYSTEMS;
D O I
10.3934/dcdsb.2016.21.1203
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A bi-spatial pullback attractor is obtained for non-autonomous and stochastic FitzHugh-Nagumo equations when the initial space is L-2(R-n)(2) and the terminate space is H-1(R-n) x L-2(R-n). Some new techniques of positive and negative truncations are used to investigate the regularity of attractors for coupling equations and to correct the essential mistake in [T. Q. Bao, Discrete Cont. Dyn. Syst. 35(2015), 441-466]. A counterexample is given for an important lemma for H-1-attractor in several literatures included above.
引用
收藏
页码:1203 / 1223
页数:21
相关论文
共 50 条
  • [41] Standing pulse solutions for the FitzHugh-Nagumo equations
    Yoshihito Oshita
    Isamu Ohnishi
    Japan Journal of Industrial and Applied Mathematics, 2003, 20
  • [42] Existence of wavefronts and impulses to FitzHugh-Nagumo equations
    Gao, WL
    Wang, JH
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2004, 57 (5-6) : 667 - 676
  • [43] On some properties of the coupled Fitzhugh-Nagumo equations
    Lavrova, S. F.
    Kudryashov, N. A.
    Sinelshchikov, D. I.
    VII INTERNATIONAL CONFERENCE PROBLEMS OF MATHEMATICAL PHYSICS AND MATHEMATICAL MODELLING, 2019, 1205
  • [44] Standing pulse solutions for the FitzHugh-Nagumo equations
    Oshita, Y
    Ohnishi, I
    JAPAN JOURNAL OF INDUSTRIAL AND APPLIED MATHEMATICS, 2003, 20 (01) : 101 - 115
  • [45] Traveling pulse solutions to FitzHugh-Nagumo equations
    Chen, Chao-Nien
    Choi, Y. S.
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2015, 54 (01) : 1 - 45
  • [46] MULTISCALE ANALYSIS FOR TRAVELING-PULSE SOLUTIONS TO THE STOCHASTIC FITZHUGH-NAGUMO EQUATIONS
    Eichinger, Katharina
    Gnann, Manuel V.
    Kuehn, Christian
    ANNALS OF APPLIED PROBABILITY, 2022, 32 (05): : 3229 - 3282
  • [47] RANDOM ATTRACTORS FOR STOCHASTIC FITZHUGH-NAGUMO SYSTEMS DRIVEN BY DETERMINISTIC NON-AUTONOMOUS FORCING
    Adili, Abiti
    Wang, Bixiang
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2013, 18 (03): : 643 - 666
  • [48] Localized Front Structures in FitzHugh-Nagumo Equations
    Chen, Chao-Nien
    Lin, Che-Hao
    Tzeng, Shyuh-Yaur
    TAIWANESE JOURNAL OF MATHEMATICS, 2019, 23 (02): : 333 - 349
  • [49] Rotating wave solutions of the FitzHugh-Nagumo equations
    Alford, John G.
    Auchmuty, Giles
    JOURNAL OF MATHEMATICAL BIOLOGY, 2006, 53 (05) : 797 - 819