A MODIFIED PROOF OF PULLBACK ATTRACTORS IN A SOBOLEV SPACE FOR STOCHASTIC FITZHUGH-NAGUMO EQUATIONS

被引:75
|
作者
Li, Yangrong [1 ]
Yin, Jinyan [1 ]
机构
[1] Southwest Univ, Sch Math & Stat, Chongqing 400715, Peoples R China
来源
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B | 2016年 / 21卷 / 04期
关键词
Random dynamical system; stochastic FitzHugh-Nagumo equations; pullback attractors; bi-spatial attractors; truncation method; REACTION-DIFFUSION EQUATIONS; DEGENERATE PARABOLIC EQUATIONS; H-1-RANDOM ATTRACTORS; GLOBAL ATTRACTORS; EXISTENCE; REGULARITY; SYSTEMS;
D O I
10.3934/dcdsb.2016.21.1203
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A bi-spatial pullback attractor is obtained for non-autonomous and stochastic FitzHugh-Nagumo equations when the initial space is L-2(R-n)(2) and the terminate space is H-1(R-n) x L-2(R-n). Some new techniques of positive and negative truncations are used to investigate the regularity of attractors for coupling equations and to correct the essential mistake in [T. Q. Bao, Discrete Cont. Dyn. Syst. 35(2015), 441-466]. A counterexample is given for an important lemma for H-1-attractor in several literatures included above.
引用
收藏
页码:1203 / 1223
页数:21
相关论文
共 50 条
  • [31] Limiting Dynamics for Stochastic FitzHugh-Nagumo Lattice Systems in Weighted Spaces
    Chen, Zhang
    Yang, Dandan
    Zhong, Shitao
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2024, 36 (01) : 321 - 352
  • [32] ATTRACTORS FOR FITZHUGH-NAGUMO LATTICE SYSTEMS WITH ALMOST PERIODIC NONLINEAR PARTS
    Boughoufala, Amira M.
    Abdallah, Ahmed Y.
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2021, 26 (03): : 1549 - 1563
  • [33] OPTIMAL CONTROL FOR THE STOCHASTIC FITZHUGH-NAGUMO MODEL WITH RECOVERY VARIABLE
    Cordoni, Francesco
    Di Persio, Luca
    EVOLUTION EQUATIONS AND CONTROL THEORY, 2018, 7 (04): : 571 - 585
  • [34] Existence and upper semicontinuity of attractors for non-autonomous stochastic lattice FitzHugh-Nagumo systems in weighted spaces
    Wang, Zhaojuan
    Zhou, Shengfan
    ADVANCES IN DIFFERENCE EQUATIONS, 2016,
  • [35] Dynamics of stochastic FitzHugh-Nagumo system on unbounded domains with memory
    My, Bui Kim
    Toan, Nguyen Duong
    DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2023, 38 (03): : 453 - 476
  • [36] Stability analysis for standing pulse solutions to FitzHugh-Nagumo equations
    Chen, Chao-Nien
    Hu, Xijun
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2014, 49 (1-2) : 827 - 845
  • [37] Numerical scheme and stability analysis of stochastic Fitzhugh-Nagumo model
    Yasin, Muhammad W.
    Iqbal, Muhammad S.
    Ahmed, Nauman
    Akgul, Ali
    Raza, Ali
    Rafiq, Muhammad
    Riaz, Muhammad Bilal
    RESULTS IN PHYSICS, 2022, 32
  • [38] Solitary Wave Dynamics Governed by the Modified FitzHugh-Nagumo Equation
    Gawlik, Aleksandra
    Vladimirov, Vsevolod
    Skurativskyi, Sergii
    JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2020, 15 (06):
  • [39] An explicit nonstandard finite difference scheme for the FitzHugh-Nagumo equations
    Chapwanya, M.
    Jejeniwa, O. A.
    Appadu, A. R.
    Lubuma, J. M. -S.
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2019, 96 (10) : 1993 - 2009
  • [40] Time Fractional Fisher-KPP and Fitzhugh-Nagumo Equations
    Angstmann, Christopher N.
    Henry, Bruce I.
    ENTROPY, 2020, 22 (09)