A MODIFIED PROOF OF PULLBACK ATTRACTORS IN A SOBOLEV SPACE FOR STOCHASTIC FITZHUGH-NAGUMO EQUATIONS

被引:75
|
作者
Li, Yangrong [1 ]
Yin, Jinyan [1 ]
机构
[1] Southwest Univ, Sch Math & Stat, Chongqing 400715, Peoples R China
来源
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B | 2016年 / 21卷 / 04期
关键词
Random dynamical system; stochastic FitzHugh-Nagumo equations; pullback attractors; bi-spatial attractors; truncation method; REACTION-DIFFUSION EQUATIONS; DEGENERATE PARABOLIC EQUATIONS; H-1-RANDOM ATTRACTORS; GLOBAL ATTRACTORS; EXISTENCE; REGULARITY; SYSTEMS;
D O I
10.3934/dcdsb.2016.21.1203
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A bi-spatial pullback attractor is obtained for non-autonomous and stochastic FitzHugh-Nagumo equations when the initial space is L-2(R-n)(2) and the terminate space is H-1(R-n) x L-2(R-n). Some new techniques of positive and negative truncations are used to investigate the regularity of attractors for coupling equations and to correct the essential mistake in [T. Q. Bao, Discrete Cont. Dyn. Syst. 35(2015), 441-466]. A counterexample is given for an important lemma for H-1-attractor in several literatures included above.
引用
收藏
页码:1203 / 1223
页数:21
相关论文
共 50 条
  • [11] CONTINUITY OF RANDOM ATTRACTORS ON A TOPOLOGICAL SPACE AND FRACTIONAL DELAYED FITZHUGH-NAGUMO EQUATIONS WITH WZ-NOISE
    Li, Yangrong
    Yang, Shuang
    Long, Guangqing
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2022, 27 (10): : 5977 - 6008
  • [12] Numerical Simulation of the FitzHugh-Nagumo Equations
    Soliman, A. A.
    ABSTRACT AND APPLIED ANALYSIS, 2012,
  • [13] Backward regularity of attractors for lattice FitzHugh-Nagumo system with double random coefficients
    Li, Fuzhi
    Xu, Dongmei
    APPLIED MATHEMATICS AND COMPUTATION, 2022, 430
  • [14] Continuity and random dynamics of the non-autonomous stochastic FitzHugh-Nagumo system on RN
    Zhao, Wenqiang
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2018, 75 (10) : 3801 - 3824
  • [15] Optimal control of stochastic FitzHugh-Nagumo equation
    Barbu, Viorel
    Cordoni, Francesco
    Di Persio, Luca
    INTERNATIONAL JOURNAL OF CONTROL, 2016, 89 (04) : 746 - 756
  • [16] Limit dynamics for the stochastic FitzHugh-Nagumo system
    Lv, Yan
    Wang, Wei
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2010, 11 (04) : 3091 - 3105
  • [17] Standing Pulse Solutions to FitzHugh-Nagumo Equations
    Chen, Chao-Nien
    Choi, Y. S.
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2012, 206 (03) : 741 - 777
  • [18] PLANAR STANDING WAVEFRONTS IN THE FITZHUGH-NAGUMO EQUATIONS
    Chen, Chao-Nien
    Kung, Shih-Yin
    Morita, Yoshihisa
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2014, 46 (01) : 657 - 690
  • [19] Stochastic resonance in FitzHugh-Nagumo neural model
    Zhou, Dengrong
    Gong, Jianchun
    Li, Dan
    AUTOMATIC CONTROL AND MECHATRONIC ENGINEERING II, 2013, 415 : 298 - +
  • [20] Traveling pulse solutions to FitzHugh-Nagumo equations
    Chen, Chao-Nien
    Choi, Y. S.
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2015, 54 (01) : 1 - 45