Modeling and Mining Optimal Patterns using Dynamic CSP

被引:2
作者
Ugarte, Willy [1 ]
Boizumault, Patrice [1 ]
Cremilleux, Bruno [1 ]
Loudni, Samir [1 ]
机构
[1] Univ Caen Basse Normandie, CNRS UMR 6072, GREYC Lab, F-14032 Caen, France
来源
2015 IEEE 27TH INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI 2015) | 2015年
关键词
Pattern Mining; Optimisation; Dynamic CSP; DISCOVERY; KNOWLEDGE; SET;
D O I
10.1109/ICTAI.2015.19
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We introduce the notion of Optimal Patterns (OPs), defined as the best patterns according to a given user preference, and show that OPs encompass many data mining problems. Then, we propose a generic method based on a Dynamic Constraint Satisfaction Problem to mine OPs, and we show that any OP is characterized by a basic constraint and a set of constraints to be dynamically added. Finally, we perform an experimental study comparing our approach vs ad hoc methods on several types of OPs.
引用
收藏
页码:33 / 40
页数:8
相关论文
共 27 条
  • [1] Ada Wai-Chee Fu, 2000, Foundations of Intelligent Systems. 12th International Symposium, ISMIS 2000. Proceedings (Lecture Notes in Artificial Intelligence Vol.1932), P59
  • [2] Borgelt C., 2003, ICDM WORKSH FIMI
  • [3] Free-sets: A condensed representation of Boolean data for the approximation of frequency queries
    Boulicaut, JF
    Bykowski, A
    Rigotti, C
    [J]. DATA MINING AND KNOWLEDGE DISCOVERY, 2003, 7 (01) : 5 - 22
  • [4] Crémilleux B, 2008, LECT NOTES COMPUT SC, V5073, P1242
  • [5] De Raedt L, 2007, PROCEEDINGS OF THE SEVENTH SIAM INTERNATIONAL CONFERENCE ON DATA MINING, P237
  • [6] De Raedt Luc, 2008, P 14 ACM SIGKDD INT, P204
  • [7] Fisher D. H., 1987, Machine Learning, V2, P139, DOI 10.1023/A:1022852608280
  • [8] Geerts F, 2004, LECT NOTES COMPUT SC, V3245, P278
  • [9] k-Pattern Set Mining under Constraints
    Guns, Tias
    Nijssen, Siegfried
    De Raedt, Luc
    [J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2013, 25 (02) : 402 - 418
  • [10] Han JW, 2002, 2002 IEEE INTERNATIONAL CONFERENCE ON DATA MINING, PROCEEDINGS, P211, DOI 10.1109/ICDM.2002.1183905