On Separable Higher Gauss Maps

被引:0
作者
Furukawa, Katsuhisa [1 ]
Ito, Atsushi [2 ]
机构
[1] Univ Tokyo, Grad Sch Math Sci, Tokyo, Japan
[2] Nagoya Univ, Grad Sch Math, Nagoya, Aichi, Japan
关键词
KLEIMAN-PIENES QUESTION; VARIETIES; CURVES;
D O I
10.1307/mmj/1555574416
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the mth Gauss map in the sense of F. L. Zak of a projective variety X subset of P-N over an algebraically closed field in any characteristic. For all integers m with n := dim(X) <= m < N, we show that the contact locus on X of a general tangent m-plane is a linear variety if the mth Gauss map is separable. We also show that for smooth X with n < N - 2, the (n + 1)th Gauss map is birational if it is separable, unless X is the Segre embedding P-1 x P-n subset of P2n-1.This is related to Ein's classification of varieties with small dual varieties in characteristic zero.
引用
收藏
页码:483 / 503
页数:21
相关论文
共 28 条