A characterization of Hajlasz-Sobolev and Triebel-Lizorkin spaces via grand Littlewood-Paley functions

被引:61
作者
Koskela, Pekka [1 ]
Yang, Dachun [2 ]
Zhou, Yuan [1 ,2 ]
机构
[1] Univ Jyvaskyla, Dept Math & Stat, FIN-40014 Jyvaskyla, Finland
[2] Beijing Normal Univ, Sch Math Sci, Lab Math & Complex Syst, Minist Educ, Beijing 100875, Peoples R China
基金
中国国家自然科学基金; 芬兰科学院;
关键词
Sobolev spaces; Triebel-Lizorkin space; Calderon reproducing formula; HARDY-SPACES; DECOMPOSITIONS; TRANSFORM; METRICS;
D O I
10.1016/j.jfa.2009.11.004
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we establish the equivalence between the Hajlasz-Sobolev spaces or classical Triebel-Lizorkin spaces and it class of grand Triebel-Lizorkin spaces on Euclidean spaces and also on metric spaces that are both doubling and reverse doubling. In particular, when p is an element of (n/(n + 1), infinity), we give a new characterization of the Hajlasz-Sobolev spaces (M) over dot(1),P (R-n) via a grand Littlewood-Paley function. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:2637 / 2661
页数:25
相关论文
共 40 条
[1]  
Adams R., 2003, SOBOLEV SPACES
[2]   SPECTRAL MULTIPLIERS ON LIE-GROUPS OF POLYNOMIAL-GROWTH [J].
ALEXOPOULOS, G .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1994, 120 (03) :973-979
[3]  
[Anonymous], 1993, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals
[4]  
[Anonymous], 1983, MONOGRAPHS MATH
[5]  
[Anonymous], 1991, CBMS
[6]   Riesz transform on manifolds and heat kernel regularity [J].
Auscher, P ;
Coulhon, T ;
Duong, XT ;
Hofmann, S .
ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2004, 37 (06) :911-957
[7]   Hardy!Sobolev spaces on strongly Lipschitz domains of Rn [J].
Auscher, P ;
Russ, E ;
Tchamitchian, P .
JOURNAL OF FUNCTIONAL ANALYSIS, 2005, 218 (01) :54-109
[8]   Hardy spaces of differential forms on Riemannian manifolds [J].
Auscher, Pascal ;
McIntosh, Alan ;
Russ, Emmanuel .
JOURNAL OF GEOMETRIC ANALYSIS, 2008, 18 (01) :192-248
[9]  
BADR N, ARXIV09102895
[10]   Atomic and molecular decompositions of anisotropic Triebel-Lizorkin spaces [J].
Bownik, M ;
Ho, KP .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 358 (04) :1469-1510