On the convergence of fixed points for Lipschitz type mappings in hyperbolic spaces

被引:0
|
作者
Kang, Shin Min [1 ,2 ]
Dashputre, Samir [3 ]
Malagar, Bhuwan Lal [3 ]
Rafiq, Arif [4 ]
机构
[1] Gyeongsang Natl Univ, Dept Math, Jinju 660701, South Korea
[2] Gyeongsang Natl Univ, RINS, Jinju 660701, South Korea
[3] Shri Shankaracharya Grp Inst, Dept Appl Math, Junwani 490020, Bhilai, India
[4] Lahore Leads Univ, Dept Math, Lahore 54810, Pakistan
关键词
S-iteration process; uniformly convex hyperbolic space; nearly asymptotically nonexpansive mapping; ASYMPTOTICALLY NONEXPANSIVE-MAPPINGS; CAT(0) SPACES; ITERATIVE CONSTRUCTION; BANACH-SPACES; THEOREMS; ERRORS;
D O I
10.1186/1687-1812-2014-229
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we prove strong and Delta-convergence theorems for a class of mappings which is essentially wider than that of asymptotically nonexpansive mappings on hyperbolic space through the S-iteration process introduced by Agarwal et al. (J. Nonlinear Convex Anal. 8: 61-79, 2007) which is faster and independent of the Mann (Proc. Am. Math. Soc. 4: 506-510, 1953) and Ishikawa (Proc. Am. Math. Soc. 44: 147-150, 1974) iteration processes. Our results generalize, extend, and unify the corresponding results of Abbas et al. (Math. Comput. Model. 55: 1418-1427, 2012), Agarwal et al. (J. Nonlinear Convex Anal. 8: 61-79, 2007), Dhompongsa and Panyanak (Comput. Math. Appl. 56: 2572-2579, 2008), and Khan and Abbas (Comput. Math. Appl. 61: 109-116, 2011).
引用
收藏
页数:15
相关论文
共 50 条