A SPACETIME DPG METHOD FOR THE SCHRODINGER EQUATION

被引:39
作者
Demkowicz, L. [1 ]
Gopalakrishnan, J. [2 ]
Nagaraj, S. [1 ]
Sepulveda, P. [2 ]
机构
[1] Univ Texas Austin, Inst Computat Engn & Sci, Austin, TX 78712 USA
[2] Portland State Univ, Portland, OR 97207 USA
基金
美国国家科学基金会;
关键词
discontinuous Petrov Galerkin; Schrodinger equation; finite element method;
D O I
10.1137/16M1099765
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A spacetirne discontinuous Petrov-Calerkin (DGP) method for the linear time dependent Schri.klinger equation is proposed. The spacetime approach is particularly attractive for capturing irregular solutions. motivated by the fact that some irregular Schrodinger solutions cannot be solutions of mrtain first order reformulations, the proposed spacetime method uses the second order Schredinger operator. Two variational formulations are proved to be well posed: a strong formulation (with no relaxation of the original equation) and a weak formulation (also called the raweak formulation," which transfers all derivatives onto test functions). The convergence of the DPC met hod based on the ultrawoak formulation is investigated using an interpolation operator. A stand-alone appendix analyzes the ultraweak formulation for general differential operators. Reports of numerical experiments motivated by pulsee propagation in dispersive optical fibers are also included.
引用
收藏
页码:1740 / 1759
页数:20
相关论文
共 28 条
[1]  
Agrawal G. P., 2012, NONLINEAR OPTICS
[2]  
[Anonymous], 2004, CBMS NSF REGIONAL C
[3]  
Bramwell J, 2012, NUMER MATH, V122, P671, DOI 10.1007/s00211-012-0476-6
[4]  
Brezis H, 2011, UNIVERSITEXT, P349, DOI 10.1007/978-0-387-70914-7_11
[5]   Low-order dPG-FEM for an elliptic PDE [J].
Carstensen, C. ;
Gallistl, D. ;
Hellwig, F. ;
Weggler, L. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2014, 68 (11) :1503-1512
[6]  
Carstensen C., 2015, 43 OB
[7]   A POSTERIORI ERROR CONTROL FOR DPG METHODS [J].
Carstensen, Carsten ;
Demkowicz, Leszek ;
Gopalakrishnan, Jay .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2014, 52 (03) :1335-1353
[8]  
Ciarlet P.G., 2002, CLASSICS APPL MATH, V40
[9]   ADAPTIVE PETROV-GALERKIN METHODS FOR FIRST ORDER TRANSPORT EQUATIONS [J].
Dahmen, Wolfgang ;
Huang, Chunyan ;
Schwab, Christoph ;
Welper, Gerrit .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2012, 50 (05) :2420-2445
[10]   Wavenumber explicit analysis of a DPG method for the multidimensional Helmholtz equation [J].
Demkowicz, L. ;
Gopalakrishnan, J. ;
Muga, I. ;
Zitelli, J. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2012, 213 :126-138