A Triboelectric-Based Artificial Whisker for Reactive Obstacle Avoidance and Local Mapping

被引:41
作者
Xu, Peng [1 ]
Wang, Xinyu [1 ]
Wang, Siyuan [1 ]
Chen, Tianyu [1 ]
Liu, Jianhua [1 ]
Zheng, Jiaxi [1 ]
Li, Wenxiang [1 ]
Xu, Minyi [1 ]
Tao, Jin [2 ,3 ]
Xie, Guangming [4 ,5 ]
机构
[1] Dalian Maritime Univ, Marine Engn Coll, Dalian 116026, Peoples R China
[2] Nankai Univ, Coll Artificial Intelligence, Tianjin 300350, Peoples R China
[3] Aalto Univ, Dept Elect Engn & Automat, Espoo 02150, Finland
[4] Peking Univ, Coll Engn, Intelligent Biomimet Design Lab, Beijing 100871, Peoples R China
[5] Peking Univ, Inst Ocean Res, Beijing 100871, Peoples R China
基金
中国国家自然科学基金; 北京市自然科学基金; 芬兰科学院;
关键词
NANOGENERATOR; SENSOR; LOCALIZATION; MODEL;
D O I
10.34133/2021/9864967
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Since designing efficient tactile sensors for autonomous robots is still a challenge, this paper proposes a perceptual system based on a bioinspired triboelectric whisker sensor (TWS) that is aimed at reactive obstacle avoidance and local mapping in unknown environments. The proposed TWS is based on a triboelectric nanogenerator (TENG) and mimics the structure of rat whisker follicles. It operates to generate an output voltage via triboelectrification and electrostatic induction between the PTFE pellet and copper films (0.3 mm thickness), where a forced whisker shaft displaces a PTFE pellet (10 mm diameter). With the help of a biologically inspired structural design, the artificial whisker sensor can sense the contact position and approximate the external stimulation area, particularly in a dark environment. To highlight this sensor's applicability and scalability, we demonstrate different functions, such as controlling LED lights, reactive obstacle avoidance, and local mapping of autonomous surface vehicles. The results show that the proposed TWS can be used as a tactile sensor for reactive obstacle avoidance and local mapping in robotics.
引用
收藏
页数:10
相关论文
共 43 条
[1]   A Compact Angular Rate Sensor System Using a Fully Decoupled Silicon-on-Glass MEMS Gyroscope [J].
Alper, Said Emre ;
Temiz, Yuksel ;
Akin, Tayfun .
JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, 2008, 17 (06) :1418-1429
[2]  
Balachandran B., 2009, Vibrations
[3]   Whisker-Like Position Sensor for Measuring Physiological Motion [J].
Bebek, Oezkan ;
Cavusoglu, M. Cenk .
IEEE-ASME TRANSACTIONS ON MECHATRONICS, 2008, 13 (05) :538-547
[4]  
Beem H, 2012, 2012 OCEANS
[5]   Calibration and validation of a harbor seal whisker-inspired flow sensor [J].
Beem, Heather ;
Hildner, Matthew ;
Triantafyllou, Michael .
SMART MATERIALS AND STRUCTURES, 2013, 22 (01)
[6]   Self-powered electronic skin based on the triboelectric generator [J].
Chen, Haotian ;
Song, Yu ;
Cheng, Xiaoliang ;
Zhang, Haixia .
NANO ENERGY, 2019, 56 :252-268
[7]   Triboelectrification on natural rose petal for harvesting environmental mechanical energy [J].
Chen, Yandong ;
Jie, Yang ;
Wang, Jue ;
Ma, Jinming ;
Jia, Xueting ;
Dou, Wei ;
Cao, Xia .
NANO ENERGY, 2018, 50 :441-447
[8]   A solution to the simultaneous localization and map building (SLAM) problem [J].
Dissanayake, MWMG ;
Newman, P ;
Clark, S ;
Durrant-Whyte, HF ;
Csorba, M .
IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, 2001, 17 (03) :229-241
[9]   Wearable Triboelectric/Aluminum Nitride Nano-Energy-Nano-System with Self-Sustainable Photonic Modulation and Continuous Force Sensing [J].
Dong, Bowei ;
Shi, Qiongfeng ;
He, Tianyiyi ;
Zhu, Shiyang ;
Zhang, Zixuan ;
Sun, Zhongda ;
Ma, Yiming ;
Kwong, Dim-Lee ;
Lee, Chengkuo .
ADVANCED SCIENCE, 2020, 7 (15)
[10]   Development of an artificial sensor for hydrodynamic detection inspired by a seal's whisker array [J].
Eberhardt, William C. ;
Wakefield, Brendan F. ;
Murphy, Christin T. ;
Casey, Caroline ;
Shakhsheer, Yousef ;
Calhoun, Benton H. ;
Reichmuth, Colleen .
BIOINSPIRATION & BIOMIMETICS, 2016, 11 (05)