Photoelectric-motivated memristor to realize single nerve synapse

被引:3
作者
Cao, Shengguo [1 ]
Jin, Xiangliang [1 ]
Wang, Yang [1 ]
Jiang, Bin [1 ]
Peng, Yan [2 ]
Luo, Jun [2 ]
机构
[1] Hunan Normal Univ, Sch Phys & Elect Sci, Changsha 410081, Hunan, Peoples R China
[2] Shanghai Univ, Sch Mechatron Engn & Automat, Shanghai 200444, Peoples R China
基金
中国国家自然科学基金;
关键词
Photoelectricity;
D O I
10.7567/1347-4065/ab4b69
中图分类号
O59 [应用物理学];
学科分类号
摘要
Nowadays, memristors are one of the most important ways to realize the nerve synapse. Memristors agree quite well with biological synapses, because they has an electrical resistance that changes from external application conditions. In this paper, we present a theory of the memristive principle of photoelectric-motivated memristors. And the photoelectric-motivated memristor is simulated to have the function of a biological synapse, including synaptic weights, spike-timing-dependent plasticity function, long-term and short-term plasticity, paired-pulse facilitation, and peak-dependent synaptic plasticity. Based on the actual test circuit, the weight of the synapse is adjustable. The photoelectric-motivated memristor provides a direction for the large-scale integration and application of light-controlled electronic synapses in CMOS technology. (C) 2019 The Japan Society of Applied Physics
引用
收藏
页数:6
相关论文
共 13 条
[1]   Neuromorphic Learning and Recognition With One-Transistor-One-Resistor Synapses and Bistable Metal Oxide RRAM [J].
Ambrogio, Stefano ;
Balatti, Simone ;
Milo, Valerio ;
Carboni, Roberto ;
Wang, Zhong-Qiang ;
Calderoni, Alessandro ;
Ramaswamy, Nirmal ;
Ielmini, Daniele .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2016, 63 (04) :1508-1515
[2]   In Situ Observation of Voltage-Induced Multilevel Resistive Switching in Solid Electrolyte Memory [J].
Choi, Sang-Jun ;
Park, Gyeong-Su ;
Kim, Ki-Hong ;
Cho, Soohaeng ;
Yang, Woo-Young ;
Li, Xiang-Shu ;
Moon, Jung-Hwan ;
Lee, Kyung-Jin ;
Kim, Kinam .
ADVANCED MATERIALS, 2011, 23 (29) :3272-+
[3]   Control of Synaptic Plasticity Learning of Ferroelectric Tunnel Memristor by Nanoscale Interface Engineering [J].
Guo, Rui ;
Zhou, Yaxiong ;
Wu, Lijun ;
Wang, Zhuorui ;
Lim, Zhishiuh ;
Yan, Xiaobing ;
Lin, Weinan ;
Wang, Han ;
Yoong, Herng Yau ;
Chen, Shaohai ;
Ariando ;
Venkatesan, Thirumalai ;
Wang, John ;
Chow, Gan Moog ;
Gruverman, Alexei ;
Miao, Xiangshui ;
Zhu, Yimei ;
Chen, Jingsheng .
ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (15) :12862-12869
[4]  
Kwon DH, 2010, NAT NANOTECHNOL, V5, P148, DOI [10.1038/NNANO.2009.456, 10.1038/nnano.2009.456]
[5]   Tuning Ionic Transport in Memristive Devices by Graphene with Engineered Nanopores [J].
Lee, Jihang ;
Du, Chao ;
Sun, Kai ;
Kioupakis, Emmanouil ;
Lu, Wei D. .
ACS NANO, 2016, 10 (03) :3571-3579
[6]   Synaptic Plasticity and Metaplasticity of Biological Synapse Realized in a KNbO3 Memristor for Application to Artificial Synapse [J].
Lee, Tae-Ho ;
Hwang, Hyun-Gyu ;
Woo, Jong-Un ;
Kim, Dae-Hyeon ;
Kim, Tae-Wook ;
Nahm, Sahn .
ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (30) :25673-25682
[7]   Electro-Photo-Sensitive Memristor for Neuromorphic and Arithmetic Computing [J].
Maier, P. ;
Hartmann, F. ;
Emmerling, M. ;
Schneider, C. ;
Kamp, M. ;
Hoefling, S. ;
Worschech, L. .
PHYSICAL REVIEW APPLIED, 2016, 5 (05)
[8]   Phosphorene nano-heterostructure based memristors with broadband response synaptic plasticity [J].
Ren, Yi ;
Hu, Liang ;
Mao, Jing-Yu ;
Yuan, Jun ;
Zeng, Yu-Jia ;
Ruan, Shuangchen ;
Yang, Jia-Qin ;
Zhou, Li ;
Zhou, Ye ;
Han, Su-Ting .
JOURNAL OF MATERIALS CHEMISTRY C, 2018, 6 (35) :9383-9393
[9]   Pavlovian conditioning demonstrated with neuromorphic memristive devices [J].
Tan, Zheng-Hua ;
Yin, Xue-Bing ;
Yang, Rui ;
Mi, Shao-Bo ;
Jia, Chun-Lin ;
Guo, Xin .
SCIENTIFIC REPORTS, 2017, 7
[10]   Atomic Layer Deposited Hf0.5Zr0.5O2-based Flexible Memristor with Short/Long-Term Synaptic Plasticity [J].
Wang, Tian-Yu ;
Meng, Jia-Lin ;
He, Zhen-Yu ;
Chen, Lin ;
Zhu, Hao ;
Sun, Qing-Qing ;
Ding, Shi-Jin ;
Zhang, David Wei .
NANOSCALE RESEARCH LETTERS, 2019, 14 (1)