Mapping-class-group action versus Galois action on profinite fundamental groups

被引:20
作者
Matsumoto, M [1 ]
Tamagawa, A
机构
[1] Kyoto Univ, Fac Human Integrated Studies, Dept Math, Kyoto 6068501, Japan
[2] Kyoto Univ, Math Sci Res Inst, Kyoto 6068502, Japan
关键词
D O I
10.1353/ajm.2000.0039
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let X be an algebraic curve of genus g, n-punctured, defined over a number field K. Then, the profinite or the pro-l completion of the topological fundamental group of X admits two actions: the action of the profinite completion of the mapping class group of the orientable surface of topological type (g, n) and the action of the absolute Galois group of K. This paper compares these two. In the profinite case, it is shown that the intersection of the images of these two actions is trivial if X is affine and its fundamental group is nonabelian. On the contrary, in the pro-l case, there are many curves such that the image of the Galois action contains the image of the mapping-class-group action. It is proved that the set of points corresponding to such curves is dense in the moduli space of (g, n)-curves.
引用
收藏
页码:1017 / 1026
页数:10
相关论文
共 34 条
[1]  
Anderson MP., 1974, Topology, V13, P229, DOI 10.1016/0040-9383(74)90016-0
[2]  
[Anonymous], 1981, LECT NOTES MATH
[3]  
ARTIN E, 1924, HAMBURFER ABH, V3, P319
[4]  
ASADA M, 1997, IN PRESS J PURE APPL
[5]   ON GALOIS EXTENSIONS OF A MAXIMAL CYCLOTOMIC FIELD [J].
BELYI, GV .
MATHEMATICS OF THE USSR-IZVESTIYA, 1980, 14 (02) :247-256
[6]  
BROUGHTON SA, 1992, TOPOLOGY 90 OHIO STA, V1, P77
[7]  
DELIGNE P., 1989, MSRI PUBL, V16, P79, DOI [10.1007/978-1-4613-9649-9_3, DOI 10.1007/978-1-4613-9649-93]
[8]  
Goncharov AB, 1998, MATH RES LETT, V5, P497
[9]  
Grothendieck A., 1971, LECT NOTES MATH, V224
[10]  
Ihara Y, 1997, J REINE ANGEW MATH, V487, P125