Finite-time control of discrete-time linear systems: Analysis and design conditions

被引:210
作者
Amato, Francesco [2 ]
Ariola, Marco [1 ]
Cosentino, Carlo [2 ]
机构
[1] Univ Napoli Parthenope, Dipartimento Tecnol, Ctr Direz, I-80143 Naples, Italy
[2] Magna Graecia Univ Catanzaro, Sch Comp & Biomed Engn, I-88100 Catanzaro, Italy
关键词
Discrete-time systems; Linear systems; Finite-time stability; LMIs; Output feedback; STABILITY; STABILIZATION;
D O I
10.1016/j.automatica.2010.02.008
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper we deal with some finite-time control problems for discrete-time, time-varying linear systems. First we provide necessary and sufficient conditions for finite-time stability; these conditions require either the computation of the state transition matrix of the system or the solution of a certain difference Lyapunov inequality. Then we address the design problem. The proposed conditions allow us to find output feedback controllers which stabilize the closed loop system in the finite-time sense; all these conditions can be expressed in terms of LMIs and therefore are numerically tractable, as shown in the example included in the paper. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:919 / 924
页数:6
相关论文
共 14 条
[1]   Finite-time stability analysis of linear discrete-time systems via polyhedral Lyapunov functions [J].
Amato, F. ;
Ambrosino, R. ;
Ariola, M. ;
Calabres, F. .
2008 AMERICAN CONTROL CONFERENCE, VOLS 1-12, 2008, :1656-+
[2]   Finite-time stabilization via dynamic output feedback [J].
Amato, F ;
Ariola, M ;
Cosentino, C .
AUTOMATICA, 2006, 42 (02) :337-342
[3]   Finite-time control of discrete-time linear systems [J].
Amato, F ;
Ariola, M .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2005, 50 (05) :724-729
[4]  
Amato F, 2003, P AMER CONTR CONF, P4452
[5]   Finite-time control of linear systems subject to parametric uncertainties and disturbances [J].
Amato, F ;
Ariola, M ;
Dorato, P .
AUTOMATICA, 2001, 37 (09) :1459-1463
[6]  
AMATO F, 2005, P 16 IFAC WORLD C
[7]   Sufficient Conditions for Finite-Time Stability of Impulsive Dynamical Systems [J].
Ambrosino, Roberto ;
Calabrese, Francesco ;
Cosentino, Carlo ;
De Tommasi, Gianmaria .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2009, 54 (04) :861-865
[8]  
Boyd S., 1994, LINEAR MATRIX INEQUA
[9]  
Dorato P., 1961, Proc. IRE Internat. Conv. Rec. Part 4, P83
[10]   Explicit controller formulas for LMI-based H-infinity synthesis [J].
Gahinet, P .
AUTOMATICA, 1996, 32 (07) :1007-1014