Annealed Scaling for a Charged Polymer

被引:3
作者
Caravenna, F. [1 ]
den Hollander, F. [2 ]
Petrelis, N. [3 ]
Poisat, J. [4 ]
机构
[1] Univ Milano Bicocca, Dipartimento Matemat & Applicaz, Via Cozzi 55, I-20125 Milan, Italy
[2] Leiden Univ, Math Inst, POB 9512, NL-2300 RA Leiden, Netherlands
[3] Univ Nantes, UMR 6629, Lab Math Jean Leray, 2 Rue Houssiniere,BP 92208, F-44322 Nantes 03, France
[4] Univ Paris 09, PSL Res Univ, CEREMADE, UMR 7534, Pl Marechal de Lattre de Tassigny, F-75775 Paris 16, France
关键词
Charged polymer; Quenched vs. annealed free energy; Large deviations; Phase transition; Ballistic vs. subballistic phase; Scaling; CENTRAL-LIMIT-THEOREM; DIRECTED WALKS; ENERGY; TAILS; MODEL;
D O I
10.1007/s11040-016-9205-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper studies an undirected polymer chain living on the one-dimensional integer lattice and carrying i.i.d. random charges. Each self-intersection of the polymer chain contributes to the interaction Hamiltonian an energy that is equal to the product of the charges of the two monomers that meet. The joint probability distribution for the polymer chain and the charges is given by the Gibbs distribution associated with the interaction Hamiltonian. The focus is on the annealed free energy per monomer in the limit as the length of the polymer chain tends to infinity. We derive a spectral representation for the free energy and use this to prove that there is a critical curve in the parameter plane of charge bias versus inverse temperature separating a ballistic phase from a subballistic phase. We show that the phase transition is first order. We prove large deviation principles for the laws of the empirical speed and the empirical charge, and derive a spectral representation for the associated rate functions. Interestingly, in both phases both rate functions exhibit flat pieces, which correspond to an inhomogeneous strategy for the polymer to realise a large deviation. The large deviation principles in turn lead to laws of large numbers and central limit theorems. We identify the scaling behaviour of the critical curve for small and for large charge bias. In addition, we identify the scaling behaviour of the free energy for small charge bias and small inverse temperature. Both are linked to an associated Sturm-Liouville eigenvalue problem. A key tool in our analysis is the Ray-Knight formula for the local times of the one-dimensional simple random walk. This formula is exploited to derive a closed form expression for the generating function of the annealed partition function, and for several related quantities. This expression in turn serves as the starting point for the derivation of the spectral representation for the free energy, and for the scaling theorems. What happens for the quenched free energy per monomer remains open. We state two modest results and raise a few questions.
引用
收藏
页码:1 / 87
页数:87
相关论文
共 41 条
  • [1] [Anonymous], 1984, Applicable mathematics series
  • [2] [Anonymous], 1966, WILEY SERIES PROBABI
  • [3] [Anonymous], LARGE DEVIATIONS FIE
  • [4] [Anonymous], 1976, Principles of Random Walk
  • [5] Annealed upper tails for the energy of a charged polymer
    Asselah, Amine
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2011, 47 (01): : 80 - 110
  • [6] Annealed Lower Tails for the Energy of a Charged Polymer
    Asselah, Amine
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2010, 138 (4-5) : 619 - 644
  • [7] BAILLON JB, 1994, J REINE ANGEW MATH, V454, P181
  • [8] Berger Q., ANNEALED SCALI UNPUB
  • [9] Long-time tails in the parabolic Anderson model with bounded potential
    Biskup, M
    König, W
    [J]. ANNALS OF PROBABILITY, 2001, 29 (02) : 636 - 682
  • [10] Chen X., 2009, IMS LECT NOTES MONOG, V57, P237