Double-zero degeneracy and heteroclinic cycles in a perturbation of the Lorenz system

被引:8
作者
Algaba, A. [1 ]
Dominguez-Moreno, M. C. [1 ]
Merino, M. [1 ]
Rodriguez-Luis, A. J. [2 ]
机构
[1] Univ Huelva, Ctr Estudios Avanzados Fis Matemat & Comp, Dept Ciencias Integradas, Huelva 21071, Spain
[2] Univ Seville, Dept Matemat Aplicada 2, ETS Ingn, Camino Descubrimientos S-N, Seville 41092, Spain
来源
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION | 2022年 / 111卷
关键词
Lorenz system; Normal form; Double-zero bifurcation; Global connections; PERIODIC-ORBITS; T-POINTS; ASYMPTOTIC STABILITY; HOPF-BIFURCATION; CHAOS; ATTRACTOR; MODEL; TRANSITION; MANIFOLDS; DYNAMICS;
D O I
10.1016/j.cnsns.2022.106482
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we consider a 3D three-parameter unfolding close to the normal form of the triple-zero bifurcation exhibited by the Lorenz system. First we study analytically the double-zero degeneracy (a double-zero eigenvalue with geometric multiplicity two) and two Hopf bifurcations. We focus on the more complex case in which the double-zero degeneracy organizes several codimension-one singularities, namely transcritical, pitchfork, Hopf and heteroclinic bifurcations. The analysis of the normal form of a Hopf-transcritical bifurcation allows to obtain the expressions for the corresponding bifurcation curves. A degenerate double-zero bifurcation is also considered. The theoretical information obtained is very helpful to start a numerical study of the 3D system. Thus, the presence of degenerate heteroclinic and homoclinic orbits, T-point heteroclinic loops and chaotic attractors is detected. We find numerical evidence that, at least, four curves of codimension-two global bifurcations are related to the triple-zero degeneracy in the system analyzed. (C) 2022 The Author(s). Published by Elsevier B.V.
引用
收藏
页数:23
相关论文
共 61 条
[41]  
Krupa M, 2004, P ROY SOC EDINB A, V134, P1177, DOI 10.1017/S0308210500003693
[42]   Lyapunov dimension formula for the global attractor of the Lorenz system [J].
Leonov, G. A. ;
Kuznetsov, N. V. ;
Korzhemanova, N. A. ;
Kusakin, D. V. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2016, 41 :84-103
[43]   A new chaotic attractor [J].
Liu, CX ;
Liu, T ;
Liu, L ;
Liu, K .
CHAOS SOLITONS & FRACTALS, 2004, 22 (05) :1031-1038
[44]   Invariant algebraic surfaces of the Lorenz system [J].
Llibre, J ;
Zhang, X .
JOURNAL OF MATHEMATICAL PHYSICS, 2002, 43 (03) :1622-1645
[45]   GLOBAL DYNAMICS OF THE LORENZ SYSTEM WITH INVARIANT ALGEBRAIC SURFACES [J].
Llibre, Jaume ;
Messias, Marcelo ;
Da Silva, Paulo Ricardo .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2010, 20 (10) :3137-3155
[46]  
LORENZ EN, 1963, J ATMOS SCI, V20, P130, DOI 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO
[47]  
2
[48]   Bifurcation analysis of a new Lorenz-like chaotic system [J].
Mello, L. F. ;
Messias, M. ;
Braga, D. C. .
CHAOS SOLITONS & FRACTALS, 2008, 37 (04) :1244-1255
[49]   Visualizing the structure of chaos in the Lorenz system [J].
Osinga, HM ;
Krauskopf, B .
COMPUTERS & GRAPHICS-UK, 2002, 26 (05) :815-823
[50]   COOPERATIVE CATALYSIS AND CHEMICAL CHAOS - A CHEMICAL-MODEL FOR THE LORENZ EQUATIONS [J].
POLAND, D .
PHYSICA D, 1993, 65 (1-2) :86-99