Double-zero degeneracy and heteroclinic cycles in a perturbation of the Lorenz system

被引:8
作者
Algaba, A. [1 ]
Dominguez-Moreno, M. C. [1 ]
Merino, M. [1 ]
Rodriguez-Luis, A. J. [2 ]
机构
[1] Univ Huelva, Ctr Estudios Avanzados Fis Matemat & Comp, Dept Ciencias Integradas, Huelva 21071, Spain
[2] Univ Seville, Dept Matemat Aplicada 2, ETS Ingn, Camino Descubrimientos S-N, Seville 41092, Spain
来源
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION | 2022年 / 111卷
关键词
Lorenz system; Normal form; Double-zero bifurcation; Global connections; PERIODIC-ORBITS; T-POINTS; ASYMPTOTIC STABILITY; HOPF-BIFURCATION; CHAOS; ATTRACTOR; MODEL; TRANSITION; MANIFOLDS; DYNAMICS;
D O I
10.1016/j.cnsns.2022.106482
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we consider a 3D three-parameter unfolding close to the normal form of the triple-zero bifurcation exhibited by the Lorenz system. First we study analytically the double-zero degeneracy (a double-zero eigenvalue with geometric multiplicity two) and two Hopf bifurcations. We focus on the more complex case in which the double-zero degeneracy organizes several codimension-one singularities, namely transcritical, pitchfork, Hopf and heteroclinic bifurcations. The analysis of the normal form of a Hopf-transcritical bifurcation allows to obtain the expressions for the corresponding bifurcation curves. A degenerate double-zero bifurcation is also considered. The theoretical information obtained is very helpful to start a numerical study of the 3D system. Thus, the presence of degenerate heteroclinic and homoclinic orbits, T-point heteroclinic loops and chaotic attractors is detected. We find numerical evidence that, at least, four curves of codimension-two global bifurcations are related to the triple-zero degeneracy in the system analyzed. (C) 2022 The Author(s). Published by Elsevier B.V.
引用
收藏
页数:23
相关论文
共 61 条
[1]   Lorenz system in the thermodynamic modelling of leukaemia malignancy [J].
Alexeev, Igor .
MEDICAL HYPOTHESES, 2017, 102 :150-155
[2]  
Algaba Antonio, 2018, Nonlinear Systems. Mathematical Theory and Computational Methods. Understanding Complex Systems (UCS), P3, DOI 10.1007/978-3-319-66766-9_1
[3]   Superluminal periodic orbits in the Lorenz system [J].
Algaba, A. ;
Merino, M. ;
Rodriguez-Luis, A. J. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2016, 39 :220-232
[4]   Takens-Bogdanov bifurcations of equilibria and periodic orbits in the Lorenz system [J].
Algaba, A. ;
Dominguez-Moreno, M. C. ;
Merino, M. ;
Rodriguez-Luis, A. J. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2016, 30 (1-3) :328-343
[5]   Analysis of the T-point-Hopf bifurcation in the Lorenz system [J].
Algaba, A. ;
Fernandez-Sanchez, F. ;
Merino, M. ;
Rodriguez-Luis, A. J. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2015, 22 (1-3) :676-691
[6]   Some results on Chua's equation near a triple-zero linear degeneracy [J].
Algaba, A ;
Merino, M ;
Freire, E ;
Gamero, E ;
Rodríguez-Luis, AJ .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2003, 13 (03) :583-608
[7]  
Algaba A, 2022, ADV NONLINEAR DYNAMI, V1, P699, DOI [10.1007/978, DOI 10.1007/978]
[8]  
Algaba A, 2009, INT J PURE APPL MATH, V57, P265
[9]   Computation of all the coefficients for the global connections in the Z2-symmetric Takens-Bogdanov normal forms [J].
Algaba, Antonio ;
Chung, Kwok-Wai ;
Qin, Bo-Wei ;
Rodriguez-Luis, Alejandro J. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2020, 81
[10]   A nonlinear time transformation method to compute all the coefficients for the homoclinic bifurcation in the quadratic Takens-Bogdanov normal form [J].
Algaba, Antonio ;
Chung, Kwok-Wai ;
Qin, Bo-Wei ;
Rodriguez-Luis, Alejandro J. .
NONLINEAR DYNAMICS, 2019, 97 (02) :979-990