Artificial intelligence in digital pathology - new tools for diagnosis and precision oncology

被引:844
作者
Bera, Kaustav [1 ]
Schalper, Kurt A. [2 ]
Rimm, David L. [2 ]
Velcheti, Vamsidhar [3 ]
Madabhushi, Anant [1 ,4 ]
机构
[1] Case Western Reserve Univ, Dept Biomed Engn, Cleveland, OH 44106 USA
[2] Yale Univ, Sch Med, Dept Pathol, New Haven, CT 06510 USA
[3] NYU, Perlmutter Canc Ctr, Thorac Med Oncol, New York, NY USA
[4] Louis Stokes Cleveland Vet Adm Med Ctr, Cleveland, OH 44106 USA
基金
美国国家卫生研究院;
关键词
IMAGE-ANALYSIS; BREAST-CANCER; INTEROBSERVER VARIABILITY; PROSTATE-CANCER; INTRATUMOR HETEROGENEITY; STAIN NORMALIZATION; GENE-EXPRESSION; NUCLEAR SHAPE; RECURRENCE; MICROSCOPY;
D O I
10.1038/s41571-019-0252-y
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
In the past decade, advances in precision oncology have resulted in an increased demand for predictive assays that enable the selection and stratification of patients for treatment. The enormous divergence of signalling and transcriptional networks mediating the crosstalk between cancer, stromal and immune cells complicates the development of functionally relevant biomarkers based on a single gene or protein. However, the result of these complex processes can be uniquely captured in the morphometric features of stained tissue specimens. The possibility of digitizing whole-slide images of tissue has led to the advent of artificial intelligence (Al) and machine learning tools in digital pathology, which enable mining of subvisual morphometric phenotypes and might, ultimately, improve patient management. In this Perspective, we critically evaluate various AI-based computational approaches for digital pathology, focusing on deep neural networks and 'hand-crafted' feature-based methodologies. We aim to provide a broad framework for incorporating Al and machine learning tools into clinical oncology, with an emphasis on biomarker development. We discuss some of the challenges relating to the use of Al, including the need for well-curated validation datasets, regulatory approval and fair reimbursement strategies. Finally, we present potential future opportunities for precision oncology.
引用
收藏
页码:703 / 715
页数:13
相关论文
共 172 条
[11]  
BARRERA C, 2018, J CLIN ONCOL S, V36
[12]   Histo-genomics: digital pathology at the forefront of precision medicine [J].
Barsoum, Ivraym ;
Tawedrous, Eriny ;
Faragalla, Hala ;
Yousef, George M. .
DIAGNOSIS, 2019, 6 (03) :203-212
[13]   Multi-Field-of-View Framework for Distinguishing Tumor Grade in ER plus Breast Cancer From Entire Histopathology Slides [J].
Basavanhally, Ajay ;
Ganesan, Shridar ;
Feldman, Michael ;
Shih, Natalie ;
Mies, Carolyn ;
Tomaszewski, John ;
Madabhushi, Anant .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2013, 60 (08) :2089-2099
[14]   Computerized Image-Based Detection and Grading of Lymphocytic Infiltration in HER2+Breast Cancer Histopathology [J].
Basavanhally, Ajay Nagesh ;
Ganesan, Shridar ;
Agner, Shannon ;
Monaco, James Peter ;
Feldman, Michael D. ;
Tomaszewski, John E. ;
Bhanot, Gyan ;
Madabhushi, Anant .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2010, 57 (03) :642-653
[15]   Systematic Analysis of Breast Cancer Morphology Uncovers Stromal Features Associated with Survival [J].
Beck, Andrew H. ;
Sangoi, Ankur R. ;
Leung, Samuel ;
Marinelli, Robert J. ;
Nielsen, Torsten O. ;
van de Vijver, Marc J. ;
West, Robert B. ;
van de Rijn, Matt ;
Koller, Daphne .
SCIENCE TRANSLATIONAL MEDICINE, 2011, 3 (108)
[16]   Using deep convolutional neural networks to identify and classify tumor-associated stroma in diagnostic breast biopsies [J].
Bejnordi, Babak Ehteshami ;
Mullooly, Maeve ;
Pfeiffer, Ruth M. ;
Fan, Shaoqi ;
Vacek, Pamela M. ;
Weaver, Donald L. ;
Herschorn, Sally ;
Brinton, Louise A. ;
van Ginneken, Bram ;
Karssemeijer, Nico ;
Beck, Andrew H. ;
Gierach, Gretchen L. ;
van der Laak, Jeroen A. W. M. ;
Sherman, Mark E. .
MODERN PATHOLOGY, 2018, 31 (10) :1502-1512
[17]   Diagnostic Assessment of Deep Learning Algorithms for Detection of Lymph Node Metastases in Women With Breast Cancer [J].
Bejnordi, Babak Ehteshami ;
Veta, Mitko ;
van Diest, Paul Johannes ;
van Ginneken, Bram ;
Karssemeijer, Nico ;
Litjens, Geert ;
van der Laak, Jeroen A. W. M. .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2017, 318 (22) :2199-2210
[18]   Computer-extracted stromal features of African-Americans versus Caucasians from H&E slides and impact on prognosis of biochemical recurrence [J].
Bhargava, Hersh Kumar ;
Leo, Patrick ;
Elliott, Robin ;
Janowczyk, Andrew ;
Whitney, Jon ;
Gupta, Sanjay ;
Yamoah, Kosj ;
Rebbeck, Timothy ;
Feldman, Michael D. ;
Lal, Priti ;
Madabhushi, Anant .
JOURNAL OF CLINICAL ONCOLOGY, 2018, 36 (15)
[19]   Emerging Themes in Image Informatics and Molecular Analysis for Digital Pathology [J].
Bhargava, Rohit ;
Madabhushi, Anant .
ANNUAL REVIEW OF BIOMEDICAL ENGINEERING, VOL 18, 2016, 18 :387-412
[20]   The path to routine use of genomic biomarkers In the cancer clinic [J].
Boutros, Paul C. .
GENOME RESEARCH, 2015, 25 (10) :1508-1513