Reducible KAM tori for two-dimensional nonlinear Schrodinger equations with explicit dependence on the spatial variable

被引:3
作者
Geng, Jiansheng [1 ]
Xue, Shuaishuai [2 ]
机构
[1] Nanjing Univ, Dept Math, Nanjing 210093, Peoples R China
[2] Nanjing Audit Univ, Sch Stat & Math, Nanjing 211815, Peoples R China
基金
中国国家自然科学基金;
关键词
Schrodinger equation; KAM tori; Quasi-periodic solutions; QUASI-PERIODIC SOLUTIONS; COMPACT LIE-GROUPS; WAVE-EQUATIONS; HAMILTONIAN PERTURBATIONS; DIMENSIONAL TORI; THEOREM; CONSTRUCTION; SYSTEMS; NLS;
D O I
10.1016/j.jfa.2022.109430
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the two-dimensional nonlinear Schrodinger equation iu(t) -Delta u + |u|(2)u partial derivative integral (x, u, u )/partial derivative u = 0, t is an element of R, x is an element of T-2 with periodic boundary conditions. The nonlinearity f (x, u, u) =Sigma(j,l,j+l >= 6) a(jl)(x)u(j)u, a(jl) = a(lj) is a real analytic function 6 in a neighborhood of the origin. We obtain, through an infinite dimensional KAM theorem, a Whitney smooth family of small-amplitude quasi-periodic solutions. (c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页数:51
相关论文
共 45 条
  • [1] [Anonymous], 2005, ANN MATH STUD
  • [2] Time quasi-periodic gravity water waves in finite depth
    Baldi, Pietro
    Berti, Massimiliano
    Haus, Emanuele
    Montalto, Riccardo
    [J]. INVENTIONES MATHEMATICAE, 2018, 214 (02) : 739 - 911
  • [3] KAM for autonomous quasi-linear perturbations of KdV
    Baldi, Pietro
    Berti, Massimiliano
    Montalto, Riccardo
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2016, 33 (06): : 1589 - 1638
  • [4] KAM for quasi-linear and fully nonlinear forced perturbations of Airy equation
    Baldi, Pietro
    Berti, Massimiliano
    Montalto, Riccardo
    [J]. MATHEMATISCHE ANNALEN, 2014, 359 (1-2) : 471 - 536
  • [5] On long time stability in Hamiltonian perturbations of non-resonant linear PDEs
    Bambusi, D
    [J]. NONLINEARITY, 1999, 12 (04) : 823 - 850
  • [6] Long time dynamics of Schrodinger and wave equations on flat tori
    Berti, M.
    Maspero, A.
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2019, 267 (02) : 1167 - 1200
  • [7] An abstract Nash-Moser theorem with parameters and applications to PDEs
    Berti, M.
    Bolle, P.
    Procesi, M.
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2010, 27 (01): : 377 - 399
  • [8] An Abstract Nash-Moser Theorem and Quasi-Periodic Solutions for NLW and NLS on Compact Lie Groups and Homogeneous Manifolds
    Berti, Massimiliano
    Corsi, Livia
    Procesi, Michela
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2015, 334 (03) : 1413 - 1454
  • [9] Quasi-periodic solutions with Sobolev regularity of NLS on Td with a multiplicative potential
    Berti, Massimiliano
    Bolle, Philippe
    [J]. JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2013, 15 (01) : 229 - 286
  • [10] Sobolev quasi-periodic solutions of multidimensional wave equations with a multiplicative potential
    Berti, Massimiliano
    Bolle, Philippe
    [J]. NONLINEARITY, 2012, 25 (09) : 2579 - 2613