Irregular discrepancy behavior of lacunary series

被引:12
作者
Aistleitner, Christoph [1 ]
机构
[1] Graz Univ Technol, Inst Math A, A-8010 Graz, Austria
来源
MONATSHEFTE FUR MATHEMATIK | 2010年 / 160卷 / 01期
关键词
Discrepancy; Lacunary series; Law of the iterated logarithm;
D O I
10.1007/s00605-008-0067-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In 1975 Philipp showed that for any increasing sequence (n(k)) of positive integers satisfying the Hadamard gap condition n(k+1)/n(k) > q > 1, k >= 1, the discrepancy D(N) of (n(k)x) mod 1 satisfies the law of the iterated logarithm 1/4 <= N -> infinity lim sup N ND(N) (n(k)x)(N log log N)(-1/2) <= C(q) a.e. Recently, Fukuyama computed the value of the lim sup for sequences of the form n(k) = theta(k), theta > 1, and in a preceding paper the author gave a Diophantine condition on (n(k)) for the value of the limsup to be equal to 1/ 2, the value obtained in the case of i. i. d. sequences. In this paper we utilize this number- theoretic connection to construct a lacunary sequence (n(k)) for which the lim sup in the LIL for the star- discrepancy D(N)* is not a constant a. e. and is not equal to the lim sup in the LIL for the discrepancy D(N).
引用
收藏
页码:1 / 29
页数:29
相关论文
共 16 条
[1]  
AISTLEITNER C, 2008, PROB THEORY IN PRESS
[2]  
AISTLEITNER C, 2008, T AM MATH S IN PRESS
[3]   AS INVARIANCE PRINCIPLE FOR LACUNARY SERIES F(NKX) [J].
BERKES, I ;
PHILIPP, W .
ACTA MATHEMATICA ACADEMIAE SCIENTIARUM HUNGARICAE, 1979, 34 (1-2) :141-155
[4]  
Berkes I., 1978, ANAL MATH, V4, P159, DOI [10.1007/BF01908987, DOI 10.1007/BF01908987]
[5]   The law of the iterated logarithm for discrepancies of {θnx} [J].
Fukuyama, K. .
ACTA MATHEMATICA HUNGARICA, 2008, 118 (1-2) :155-170
[6]  
FUKUYAMA K, 2008, MONATSH MAT IN PRESS
[8]  
Kesten H., 1964, Acta Arith, V10, P183, DOI [10.4064/aa-10-2-183-213, DOI 10.4064/AA-10-2-183-213]
[10]  
Philipp W., 1974, Acta Arith., V26, P241