Chemisorbed Superoxide Species Enhanced the High Catalytic Performance of Ag/Co3O4 Nanocubes for Soot Oxidation

被引:49
|
作者
Chen, Longwen [1 ,2 ,3 ]
Li, Tan [1 ]
Zhang, Jun [1 ,2 ,3 ]
Wang, Jing [1 ,2 ,3 ]
Chen, Peirong [1 ,2 ,3 ]
Fu, Mingli [1 ,2 ,3 ]
Wu, Junliang [1 ,2 ,3 ]
Ye, Daiqi [1 ,2 ,3 ]
机构
[1] South China Univ Technol, Sch Environm & Energy, Guangzhou 510640, Peoples R China
[2] Guangdong Prov Key Lab Atmospher Environm & Pollu, Guangzhou 510640, Peoples R China
[3] Natl Engn Lab VOCs Pollut Control Technol & Equip, Guangzhou 510640, Peoples R China
基金
中国国家自然科学基金;
关键词
Ag/Co3O4; nanocubes; chemisorbed oxygen; superoxide species; soot oxidation; in situ characterization; CO OXIDATION; SILVER CATALYSTS; CEO2; CATALYSTS; ACTIVE-SITES; OXYGEN; CO3O4; COMBUSTION; CERIA; NANOPARTICLES; MECHANISM;
D O I
10.1021/acsami.1c03935
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The respective action mode between surface-adsorbed oxygen and bulk lattice oxygen during catalytic soot oxidation is still not fully recognized. Herein, a series of Ag-loaded Co3O4 catalysts with different Ag loading amounts were prepared by the impregnation method, and 5% Ag/Co3O4 presented competitive catalytic activity toward soot combustion with a T-50 below 290 degrees C in 10% O-2/N-2. This remarkable improvement in catalytic performance could be primarily attributed to the enhanced Ag-Co3O4 metal-support interaction induced by the formation of uniform, dispersive, and suitable size metallic Ag nanoparticles. The activation, activity, consumption-regeneration, identification, and reaction of surface-adsorbed oxygen along with the activity of bulk lattice oxygen were characterized by various designed and in situ techniques. The results demonstrated that the chemisorbed superoxide species (O-2(-)) play the potentially responsible role for boosting soot combustion, while the bulk lattice oxygen is much less active within the tested temperatures, inducing a negligible activity contribution. Moreover, soot-temperature programmed reduction, isothermal kinetic study, and density functional theory calculation provided supplementary support for the enhancement effect of Ag-Co3O4 combination in the activation and utilization of surface-adsorbed oxygen. The overall objective of this work is to identify the role of surface-adsorbed oxygen and bulk lattice oxygen for soot oxidation over Ag/Co3O4 catalysts.
引用
收藏
页码:21436 / 21449
页数:14
相关论文
共 50 条
  • [21] Ultralow doping of Zr species into Co3O4 catalyst enhance the CO oxidation performance
    He, Chenliang
    Chen, Zihang
    Shi, Ying
    Qin, Chunlan
    Zhang, Lidong
    MOLECULAR CATALYSIS, 2024, 564
  • [22] Solvothermal synthesis and capacitance performance of Co3O4 nanocubes
    Huang Ke-Long
    Zeng Wen-Wen
    Yang You-Ping
    Liu Su-Qin
    Liu Ren-Sheng
    CHINESE JOURNAL OF INORGANIC CHEMISTRY, 2007, 23 (09) : 1555 - 1560
  • [23] A facial strategy to synthesize Pd/Co3O4 nanosheets with enhanced performance for methane catalytic oxidation
    Yang, Nating
    Ni, Shenglin
    Sun, Yuhan
    Zhu, Yan
    MOLECULAR CATALYSIS, 2018, 452 : 28 - 35
  • [24] Synthesis and electrocatalytic activities of Co3O4 nanocubes
    Song, Xu Chun
    Wang, Xia
    Zheng, Yi Fan
    Ma, Rong
    Yin, Hao Yong
    JOURNAL OF NANOPARTICLE RESEARCH, 2011, 13 (03) : 1319 - 1324
  • [25] High and stable catalytic activity of porous Ag/Co3O4 nanocomposites derived from MOFs for CO oxidation
    Bao, Shouxin
    Yan, Nan
    Shi, Xiaohui
    Li, Ren
    Chen, Qianwang
    APPLIED CATALYSIS A-GENERAL, 2014, 487 : 189 - 194
  • [26] Highly efficient catalytic soot combustion performance of hierarchically meso-macroporous Co3O4/CeO2 nanosheet monolithic catalysts
    Xing, Lingli
    Yang, Yuexi
    Ren, Wei
    Zhao, Dongyue
    Tian, Ye
    Ding, Tong
    Zhang, Jing
    Zheng, Lirong
    Li, Xingang
    CATALYSIS TODAY, 2020, 351 : 83 - 93
  • [27] Mesoporous Co3O4 for Low Temperature CO Oxidation: Effect of Calcination Temperatures on Their Catalytic Performance
    Wang, Hongjing
    Teng, Yonghong
    Radhakrishnan, Logudurai
    Nemoto, Yoshihiro
    Imura, Masataka
    Shimakawa, Yuichi
    Yamauchi, Yusuke
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2011, 11 (05) : 3843 - 3850
  • [28] Enhanced catalytic performance for toluene purification over Co3O4/MnO2 catalyst through the construction of different Co3O4-MnO2 interface
    Liu, Wei
    Xiang, Wenjie
    Guan, Nana
    Cui, Ruoyang
    Cheng, Hao
    Chen, Xi
    Song, Zhongxian
    Zhang, Xuejun
    Zhang, Yinmin
    SEPARATION AND PURIFICATION TECHNOLOGY, 2022, 278
  • [29] Mechanistic Origin of Enhanced CO Catalytic Oxidation over Co3O4/LaCoO3 at Lower Temperature
    Liu, Shujie
    Zhang, Wei
    Deng, Ting
    Wang, Dong
    Wang, Xiyang
    Zhang, Xinxin
    Zhang, Cai
    Zheng, Weitao
    CHEMCATCHEM, 2017, 9 (16) : 3102 - 3106
  • [30] Synthesis of Co3O4 catalysts with different morphologies and their excellent catalytic performance for soot combustion
    Zhang, Xinyu
    Zhang, Chunlei
    Gao, Siyu
    Chen, Xinyu
    Chen, Siyuan
    Zhou, Shengran
    Yu, Di
    Wang, Lanyi
    Fan, Xiaoqiang
    Yu, Xuehua
    Zhao, Zhen
    CATALYSIS SCIENCE & TECHNOLOGY, 2024, 14 (24) : 7071 - 7080