SbSeI pyroelectric nanogenerator for a low temperature waste heat recovery

被引:41
作者
Mistewicz, Krystian [1 ]
Jesionek, Marcin [1 ]
Nowak, Marian [1 ]
Koziol, Mateusz [2 ]
机构
[1] Silesian Tech Univ, Ctr Sci & Educ, Inst Phys, Krasinskiego, PL-40019 Katowice, Poland
[2] Silesian Tech Univ, Fac Mat Engn & Met, Krasinskiego 8, PL-40019 Katowice, Poland
关键词
Antimony selenoiodide (SbSeI); Nanowires; Pyroelectric effect; Nanogenerator; Thermal-electric conversion; Renewable energy; FERROELECTRIC BATIO3 MATERIALS; THERMOELECTRIC PROPERTIES; OPTICAL-PROPERTIES; PERFORMANCE; NANOWIRES; FIGURE; MERIT; PHOTOCONDUCTIVITY; GENERATOR; DEVICES;
D O I
10.1016/j.nanoen.2019.103906
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The low-grade waste heat, which constitutes majority of the total waste heat produced in industrial sector, is very difficult to be recovered. Pyroelectric materials have recently received a great attention for harvesting waste heat due to their ability to convert temperature fluctuations into an electrical energy. A simple, scalable and cheap fabrication method of pyroelectric nanogenerator (PENG) based on antimony selenoiodide (SbSeI) is presented for the first time. It involves a sonochemical synthesis of SbSeI nanowires and their high pressure (100 MPa) compression at room temperature into a bulk sample. Fabricated device has been subjected to thermal fluctuations, thereby generating an electric signal which has been highly correlated to the thermal input. SbSeI PENG has generated electric output up to 11 nA with power density of 0.59(4) mu W/m(2) upon exposure to heat-cool condition for a temperature variation from 324 K to 334 K. Presented paper reports also the temperature dependences of electric conductance and pyroelectric coefficient of compressed SbSeI nanowires, which has reached the maximum value of 44(5) nC/(cm(2) K) at 327 K.
引用
收藏
页数:8
相关论文
共 75 条
[31]   Pyroelectric response of ferroelectric nanowires: Size effect and electric energy harvesting [J].
Morozovska, A. N. ;
Eliseev, E. A. ;
Svechnikov, G. S. ;
Kalinin, S. V. .
JOURNAL OF APPLIED PHYSICS, 2010, 108 (04)
[32]   Potential of energy harvesting in barium titanate based laminates from room temperature to cryogenic/high temperatures: measurements and linking phase field and finite element simulations [J].
Narita, Fumio ;
Fox, Marina ;
Mori, Kotaro ;
Takeuchi, Hiroki ;
Kobayashi, Takuya ;
Omote, Kenji .
SMART MATERIALS AND STRUCTURES, 2017, 26 (11)
[33]   Transient characteristics and negative photoconductivity of SbSI humidity sensor [J].
Nowak, M. ;
Mistewicz, K. ;
Nowrot, A. ;
Szperlich, P. ;
Jesionek, M. ;
Starczewska, A. .
SENSORS AND ACTUATORS A-PHYSICAL, 2014, 210 :32-40
[34]   Sonochemical preparation of SbSeI gel [J].
Nowak, M. ;
Kauch, B. ;
Szperlich, P. ;
Jesionek, M. ;
Kepinska, M. ;
Bober, L. ;
Szala, J. ;
Moskal, G. ;
Rzychon, T. ;
Stroz, D. .
ULTRASONICS SONOCHEMISTRY, 2009, 16 (04) :546-551
[35]  
Nowak M, 2019, NANOMATERIALS SYNTHE, DOI [10.1016/B978-0-12-815751-0.00010-9, DOI 10.1016/B978-0-12-815751-0.00010-9]
[36]  
Nowak M, 2019, MICRO NANO TECHNOL, P225, DOI 10.1016/B978-0-12-815749-7.00009-8
[37]  
Olszowy M., 2003, Condensed Matter Physics, V6, P307, DOI 10.5488/CMP.6.2.307
[38]   GROWTH HABITS OF SBSEL AND MICROHARDNESS STUDIES [J].
PALANIAPPAN, L ;
ANBUKUMAR, S ;
GNANAM, FD ;
RAMASAMY, P .
JOURNAL OF MATERIALS SCIENCE LETTERS, 1986, 5 (05) :580-582
[39]   1D SbSeI, SbSI, and SbSBr With High Stability and Novel Properties for Microelectronic, Optoelectronic, and Thermoelectric Applications [J].
Peng, Bo ;
Xu, Ke ;
Zhang, Hao ;
Ning, Zeyu ;
Shao, Hezhu ;
Ni, Gang ;
Li, Jing ;
Zhu, Yongyuan ;
Zhu, Heyuan ;
Soukoulis, Costas M. .
ADVANCED THEORY AND SIMULATIONS, 2018, 1 (01)
[40]  
Popolitov V. I., 1969, Kristallografiya, V14, P375