Three-dimensional numerical modeling on high pressure membrane reactors for high temperature water-gas shift reaction

被引:14
作者
Chein, R. Y. [1 ]
Chen, Y. C. [2 ]
Chyou, Y. P. [3 ]
Chung, J. N. [4 ]
机构
[1] Natl Chung Hsing Univ, Dept Mech Engn, Taichung 40227, Taiwan
[2] Natl United Univ, Dept Energy Engn, Miaoli 36003, Taiwan
[3] Inst Nucl Energy Res, Ctr Environm & Energy, Taoyuan 32546, Taiwan
[4] Univ Florida, Dept Mech & Aerosp Engn, Gainesville, FL 32611 USA
关键词
Coal-derived syngas; Water-gas shift reaction; Membrane reactor; CO conversion; H-2; recovery; HYDROGEN-PRODUCTION; PD; INHIBITION; SIMULATION; PALLADIUM; KINETICS; SYNGAS; WGSR; H2S;
D O I
10.1016/j.ijhydene.2014.07.113
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This study presents a three-dimensional numerical model that simulates the H-2 production from coal-derived syngas via a water-gas shift reaction in membrane reactors. The reactor was operated at a temperature of 900 degrees C, the typical syngas temperature at gasifier exit. The effects of membrane permeance, syngas composition, reactant residence time, sweep gas flow rate and steam-to-carbon (S/C) ratio on reactor performance were examined. Using CO conversion and H-2 recovery to characterize the reactor performance, it was found that the reactor performance can be enhanced using higher sweep gas flow rate, membrane permeance and S/C ratio. However, CO conversion and H-2 recovery limiting values were found when these parameters were further increased. The numerical results also indicated that the reactor performance degraded with increasing CO2 content in the syngas composition. Copyright (C) 2014, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:15517 / 15529
页数:13
相关论文
共 33 条
[1]  
[Anonymous], 1960, Transport Phenomena
[2]   High pressure palladium membrane reactor for the high temperature water-gas shift reaction [J].
Augustine, Alexander S. ;
Ma, Yi Hua ;
Kazantzis, Nikolaos K. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2011, 36 (09) :5350-5360
[3]   Engineering evaluations of a catalytic membrane reactor for the water gas shift reaction [J].
Barbieri, G ;
Brunetti, A ;
Granato, T ;
Bernardo, P ;
Drioli, E .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2005, 44 (20) :7676-7683
[4]   An economic survey of hydrogen production from conventional and alternative energy sources [J].
Bartels, Jeffrey R. ;
Pate, Michael B. ;
Olson, Norman K. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2010, 35 (16) :8371-8384
[5]   Co-current and counter-current modes for water gas shift membrane reactor [J].
Basile, A ;
Paturzo, L ;
Gallucci, F .
CATALYSIS TODAY, 2003, 82 (1-4) :275-281
[6]   Water-gas shift reaction in a Pd membrane reactor over Pt/Ce0.6Zr0.4O2 catalyst [J].
Bi, Yadong ;
Xu, Hengyong ;
Li, Wenzhao ;
Goldbach, Andreas .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2009, 34 (07) :2965-2971
[7]   Uncatalyzed and wall-catalyzed forward water-gas shift reaction kinetics [J].
Bustamante, F ;
Enick, RM ;
Killmeyer, RP ;
Howard, BH ;
Rothenberger, KS ;
Cugini, AV ;
Morreale, BD ;
Ciocco, MV .
AICHE JOURNAL, 2005, 51 (05) :1440-1454
[8]   High-temperature kinetics of the homogeneous reverse water-gas shift reaction [J].
Bustamante, F ;
Enick, RM ;
Cugini, AV ;
Killmeyer, RP ;
Howard, BH ;
Rothenberger, KS ;
Ciocco, MV ;
Morreale, BD .
AICHE JOURNAL, 2004, 50 (05) :1028-1041
[9]   Steam demand reduction of water-gas shift reaction in IGCC power plants with pre-combustion CO2 capture [J].
Carbo, M. C. ;
Boon, J. ;
Jansen, D. ;
van Dijk, H. A. J. ;
Dijkstra, J. W. ;
van den Brink, R. W. ;
Verkooijen, A. H. M. .
INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2009, 3 (06) :712-719
[10]   Hydrogen production from water gas shift reactions in association with separation using a palladium membrane tube [J].
Chen, Wei-Hsin ;
Lu, Jau-Jang .
INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2012, 36 (03) :346-354