Quantum Monte Carlo Simulations of Fidelity at Magnetic Quantum Phase Transitions

被引:111
作者
Schwandt, David [1 ,2 ]
Alet, Fabien [1 ,2 ]
Capponi, Sylvain [1 ,2 ]
机构
[1] Univ Toulouse, UPS, IRSAMC, Phys Theor Lab, F-31062 Toulouse, France
[2] CNRS, LPT, IRSAMC, F-31062 Toulouse, France
关键词
SYSTEMS; CAV4O9; MODEL;
D O I
10.1103/PhysRevLett.103.170501
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
When a system undergoes a quantum phase transition, the ground-state wave function shows a change of nature, which can be monitored using the fidelity concept. We introduce two quantum Monte Carlo schemes that allow the computation of fidelity and its susceptibility for large interacting many-body systems. These methods are illustrated on a two-dimensional Heisenberg model, where fidelity estimators show marked behavior at two successive quantum phase transitions. We also develop a scaling theory which relates the divergence of the fidelity susceptibility to the critical exponent of the correlation length. A good agreement is found with the numerical results.
引用
收藏
页数:4
相关论文
共 38 条
[1]   The ALPS project release 1.3:: Open-source software for strongly correlated systems [J].
Albuquerque, A. F. ;
Alet, F. ;
Corboz, P. ;
Dayal, P. ;
Feiguin, A. ;
Fuchs, S. ;
Gamper, L. ;
Gull, E. ;
Guertler, S. ;
Honecker, A. ;
Igarashi, R. ;
Koerner, M. ;
Kozhevnikov, A. ;
Laeuchli, A. ;
Manmana, S. R. ;
Matsumoto, M. ;
McCulloch, I. P. ;
Michel, F. ;
Noack, R. M. ;
Pawlowski, G. ;
Pollet, L. ;
Pruschke, T. ;
Schollwoeck, U. ;
Todo, S. ;
Trebst, S. ;
Troyer, M. ;
Werner, P. ;
Wessel, S. .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2007, 310 (02) :1187-1193
[2]  
ALBUQUERQUE F, IN PRESS
[3]   Generalized directed loop method for quantum Monte Carlo simulations [J].
Alet, F ;
Wessel, S ;
Troyer, M .
PHYSICAL REVIEW E, 2005, 71 (03)
[4]  
BARANKOV R, ARXIV09100255
[5]   Critical exponents and equation of state of the three-dimensional Heisenberg universality class [J].
Campostrini, M ;
Hasenbusch, M ;
Pelissetto, A ;
Rossi, P ;
Vicari, E .
PHYSICAL REVIEW B, 2002, 65 (14) :1-21
[6]  
DEGRANDI C, ARXIV09095181
[7]  
GU S, ARXIV08113127
[8]   Tensor-entanglement renormalization group approach as a unified method for symmetry breaking and topological phase transitions [J].
Gu, Zheng-Cheng ;
Levin, Michael ;
Wen, Xiao-Gang .
PHYSICAL REVIEW B, 2008, 78 (20)
[9]   Accurate determination of tensor network state of quantum lattice models in two dimensions [J].
Jiang, H. C. ;
Weng, Z. Y. ;
Xiang, T. .
PHYSICAL REVIEW LETTERS, 2008, 101 (09)
[10]   Classical Simulation of Infinite-Size Quantum Lattice Systems in Two Spatial Dimensions [J].
Jordan, J. ;
Orus, R. ;
Vidal, G. ;
Verstraete, F. ;
Cirac, J. I. .
PHYSICAL REVIEW LETTERS, 2008, 101 (25)