Historical developments in convergence analysis for Newton's and Newton-like methods

被引:77
|
作者
Yamamoto, T [1 ]
机构
[1] Ehime Univ, Fac Sci, Dept Math Sci, Matsuyama, Ehime 7908577, Japan
关键词
nonlinear equations; convergence theorems; error estimates; Newton's method; Newton-like methods; Halley's method;
D O I
10.1016/S0377-0427(00)00417-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Historical developments in convergence theory as well as error estimates for Newton's method and Newton-like methods for nonlinear equations are described, mainly for differentiable equations in Banach spaces. (C) 2000 Elsevier Science B.V. All rights reserved. MSC: 47H17; 65J15.
引用
收藏
页码:1 / 23
页数:23
相关论文
共 50 条
  • [41] A family of new Newton-like methods
    Kou, Jisheng
    Li, Yitian
    APPLIED MATHEMATICS AND COMPUTATION, 2007, 192 (01) : 162 - 167
  • [42] Unified convergence domains of Newton-like methods for solving operator equations
    Argyros, Ioannis K.
    George, Santhosh
    APPLIED MATHEMATICS AND COMPUTATION, 2016, 286 : 106 - 114
  • [43] Newton-like methods for nonparametric independent component analysis
    Shen, Hao
    Hueper, Knut
    Smola, Alexander J.
    NEURAL INFORMATION PROCESSING, PT 1, PROCEEDINGS, 2006, 4232 : 1068 - 1077
  • [44] Semilocal Convergence Theorem for a Newton-like Method
    Lin, Rong-Fei
    Wu, Qing-Biao
    Chen, Min-Hong
    Liu, Lu
    Dai, Ping-Fei
    EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2017, 7 (03) : 482 - 494
  • [45] A new convergence theorem for Newton-like methods in Banach space and applications
    Argyros, Ioannis K.
    COMPUTATIONAL & APPLIED MATHEMATICS, 1999, 18 (03): : 343 - 353
  • [46] On the convergence of inexact Newton-like methods under mild differentiability conditions
    Singh, Vipin Kumar
    APPLIED MATHEMATICS AND COMPUTATION, 2020, 370
  • [47] Expanding the Convergence Domain of Newton-like Methods and Applications in Banach Space
    Argyros, Ioannis K.
    George, Santhosh
    PUNJAB UNIVERSITY JOURNAL OF MATHEMATICS, 2015, 47 (01): : 1 - 13
  • [48] Concerning the Convergence of a Modified Newton-Like Method
    Argyros, Ioannis K.
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 1999, 18 (03): : 785 - 792
  • [49] STUDY OF LOCAL CONVERGENCE OF NEWTON-LIKE METHODS FOR SOLVING NONLINEAR EQUATIONS
    Kumar, Deepak
    Sharma, Janak Raj
    ADVANCES AND APPLICATIONS IN MATHEMATICAL SCIENCES, 2018, 18 (01): : 127 - 140
  • [50] Affine invariant local convergence theorems for inexact Newton-like methods
    Ioannis K. Argyros
    Korean Journal of Computational & Applied Mathematics, 1999, 6 (2): : 291 - 304