Architecture of autoinhibited and active BRAF-MEK1-14-3-3 complexes

被引:205
作者
Park, Eunyoung [1 ,2 ]
Rawson, Shaun [2 ]
Li, Kunhua [1 ,2 ]
Kim, Byeong-Won [1 ,2 ]
Ficarro, Scott B. [1 ,3 ,4 ,5 ]
Gonzalez-Del Pino, Gonzalo [1 ,2 ]
Sharif, Humayun [1 ,2 ]
Marto, Jarrod A. [1 ,3 ,4 ,5 ]
Jeon, Hyesung [1 ,2 ]
Eck, Michael J. [1 ,2 ]
机构
[1] Dana Farber Canc Inst, Dept Canc Biol, Boston, MA 02115 USA
[2] Harvard Med Sch, Dept Biol Chem & Mol Pharmacol, Boston, MA 02115 USA
[3] Dana Farber Canc Inst, Blais Prote Ctr, Boston, MA 02115 USA
[4] Brigham & Womens Hosp, Dept Pathol, 75 Francis St, Boston, MA 02115 USA
[5] Harvard Med Sch, Boston, MA 02115 USA
基金
美国国家卫生研究院;
关键词
CYSTEINE-RICH DOMAIN; CRYSTAL-STRUCTURES; PROTEIN-KINASES; MEK INHIBITION; RAF KINASE; BRAF GENE; C-RAF; B-RAF; ACTIVATION; MUTATIONS;
D O I
10.1038/s41586-019-1660-y
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
RAF family kinases are RAS-activated switches that initiate signalling through the MAP kinase cascade to control cellular proliferation, differentiation and survival(1-3). RAF activity is tightly regulated and inappropriate activation is a frequent cause of cancer(4-6); however, the structural basis for RAF regulation is poorly understood at present. Here we use cryo-electron microscopy to determine autoinhibited and active-state structures of full-length BRAF in complexes with MEK1 and a 14-3-3 dimer. The reconstruction reveals an inactive BRAF-MEK1 complex restrained in a cradle formed by the 14-3-3 dimer, which binds the phosphorylated S365 and S729 sites that flank the BRAF kinase domain. The BRAF cysteine-rich domain occupies a central position that stabilizes this assembly, but the adjacent RAS-binding domain is poorly ordered and peripheral. The 14-3-3 cradle maintains autoinhibition by sequestering the membrane-binding cysteine-rich domain and blocking dimerization of the BRAF kinase domain. In the active state, these inhibitory interactions are released and a single 14-3-3 dimer rearranges to bridge the C-terminal pS729 binding sites of two BRAFs, which drives the formation of an active, back-to-back BRAF dimer. Our structural snapshots provide a foundation for understanding normal RAF regulation and its mutational disruption in cancer and developmental syndromes.
引用
收藏
页码:545 / +
页数:26
相关论文
共 55 条
[1]   PHENIX: a comprehensive Python']Python-based system for macromolecular structure solution [J].
Adams, Paul D. ;
Afonine, Pavel V. ;
Bunkoczi, Gabor ;
Chen, Vincent B. ;
Davis, Ian W. ;
Echols, Nathaniel ;
Headd, Jeffrey J. ;
Hung, Li-Wei ;
Kapral, Gary J. ;
Grosse-Kunstleve, Ralf W. ;
McCoy, Airlie J. ;
Moriarty, Nigel W. ;
Oeffner, Robert ;
Read, Randy J. ;
Richardson, David C. ;
Richardson, Jane S. ;
Terwilliger, Thomas C. ;
Zwart, Peter H. .
ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2010, 66 :213-221
[2]   Towards automated crystallographic structure refinement with phenix.refine [J].
Afonine, Pavel V. ;
Grosse-Kunstleve, Ralf W. ;
Echols, Nathaniel ;
Headd, Jeffrey J. ;
Moriarty, Nigel W. ;
Mustyakimov, Marat ;
Terwilliger, Thomas C. ;
Urzhumtsev, Alexandre ;
Zwart, Peter H. ;
Adams, Paul D. .
ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2012, 68 :352-367
[3]   multiplierz v2.0: A Python']Python-based ecosystem for shared access and analysis of native mass spectrometry data [J].
Alexander, William M. ;
Ficarro, Scott B. ;
Adelmant, Guillaume ;
Marto, Jarrod A. .
PROTEOMICS, 2017, 17 (15-16)
[4]   14-3-3 zeta negatively regulates Raf-1 activity by interactions with the Raf-1 cysteine-rich domain [J].
Clark, GJ ;
Drugan, JK ;
Rossmann, KL ;
Carpenter, JW ;
RogersGraham, K ;
Fu, H ;
Der, CJ ;
Campbell, SL .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (34) :20990-20993
[5]   The RafC1 cysteine-rich domain contains multiple distinct regulatory epitopes which control Ras-dependent Raf activation [J].
Daub, M ;
Jöckel, J ;
Quack, T ;
Weber, CK ;
Schmitz, F ;
Rapp, UR ;
Wittinghofer, A ;
Block, C .
MOLECULAR AND CELLULAR BIOLOGY, 1998, 18 (11) :6698-6710
[6]   Mutations of the BRAF gene in human cancer [J].
Davies, H ;
Bignell, GR ;
Cox, C ;
Stephens, P ;
Edkins, S ;
Clegg, S ;
Teague, J ;
Woffendin, H ;
Garnett, MJ ;
Bottomley, W ;
Davis, N ;
Dicks, N ;
Ewing, R ;
Floyd, Y ;
Gray, K ;
Hall, S ;
Hawes, R ;
Hughes, J ;
Kosmidou, V ;
Menzies, A ;
Mould, C ;
Parker, A ;
Stevens, C ;
Watt, S ;
Hooper, S ;
Wilson, R ;
Jayatilake, H ;
Gusterson, BA ;
Cooper, C ;
Shipley, J ;
Hargrave, D ;
Pritchard-Jones, K ;
Maitland, N ;
Chenevix-Trench, G ;
Riggins, GJ ;
Bigner, DD ;
Palmieri, G ;
Cossu, A ;
Flanagan, A ;
Nicholson, A ;
Ho, JWC ;
Leung, SY ;
Yuen, ST ;
Weber, BL ;
Siegler, HF ;
Darrow, TL ;
Paterson, H ;
Marais, R ;
Marshall, CJ ;
Wooster, R .
NATURE, 2002, 417 (6892) :949-954
[7]   Discrete cytosolic macromolecular BRAF complexes exhibit distinct activities and composition [J].
Diedrich, Britta ;
Rigbolt, Kristoffer T. G. ;
Roering, Michael ;
Herr, Ricarda ;
Kaeser-Pebernard, Stephanie ;
Gretzmeier, Christine ;
Murphy, Robert F. ;
Brummer, Tilman ;
Dengjel, Joern .
EMBO JOURNAL, 2017, 36 (05) :646-663
[8]   Features and development of Coot [J].
Emsley, P. ;
Lohkamp, B. ;
Scott, W. G. ;
Cowtan, K. .
ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 2010, 66 :486-501
[9]  
Ficarro SB, 2017, PROTEOMES, V5, DOI 10.3390/proteomes5030020
[10]   Crystal Structures of MEK1 Binary and Ternary Complexes with Nucleotides and Inhibitors [J].
Fischmann, Thierry O. ;
Smith, Catherine K. ;
Mayhood, Todd W. ;
Myers, Joseph E., Jr. ;
Reichert, Paul ;
Mannarino, Anthony ;
Carr, Donna ;
Zhu, Hugh ;
Wong, Jesse ;
Yang, Rong-Sheng ;
Le, Hung V. ;
Madison, Vincent S. .
BIOCHEMISTRY, 2009, 48 (12) :2661-2674