Early EEG Features for Outcome Prediction After Cardiac Arrest in Children

被引:33
|
作者
Fung, France W. [1 ,2 ,3 ]
Topjian, Alexis A. [4 ,5 ]
Xiao, Rui [6 ]
Abend, Nicholas S. [1 ,2 ,3 ,5 ]
机构
[1] Childrens Hosp Philadelphia, Dept Pediat, Div Neurol, Philadelphia, PA 19104 USA
[2] Univ Penn, Dept Neurol, Perelman Sch Med, Philadelphia, PA 19104 USA
[3] Univ Penn, Dept Pediat, Perelman Sch Med, Philadelphia, PA 19104 USA
[4] Childrens Hosp Philadelphia, Dept Anesthesia & Crit Care Med, Philadelphia, PA 19104 USA
[5] Univ Penn, Dept Anesthesia & & Crit Care, Perelman Sch Med, Philadelphia, PA 19104 USA
[6] Univ Penn, Ctr Clin Epidemiol & Biostat, Perelman Sch Med, Philadelphia, PA 19104 USA
关键词
EEG; Cardiac arrest; Pediatric; Outcome; ELECTROGRAPHIC STATUS EPILEPTICUS; CRITICALLY-ILL ADULTS; THERAPEUTIC HYPOTHERMIA; CARDIOPULMONARY-RESUSCITATION; INTERRATER AGREEMENT; CONSENSUS STATEMENT; UNITED-STATES; ELECTROENCEPHALOGRAPHY; PATTERNS; TERMINOLOGY;
D O I
10.1097/WNP.0000000000000591
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Purpose: We aimed to determine which early EEG features and feature combinations most accurately predicted short-term neurobehavioral outcomes and survival in children resuscitated after cardiac arrest. Methods: This was a prospective, single-center observational study of infants and children resuscitated from cardiac arrest who underwent conventional EEG monitoring with standardized EEG scoring. Logistic regression evaluated the marginal effect of each EEG variable or EEG variable combinations on the outcome. The primary outcome was neurobehavioral outcome (Pediatric Cerebral Performance Category score), and the secondary outcome was mortality. The authors identified the models with the highest areas under the receiver operating characteristic curve (AUC), evaluated the optimal models using a 5-fold cross-validation approach, and calculated test characteristics maximizing specificity. Results: Eighty-nine infants and children were evaluated. Unfavorable neurologic outcome (Pediatric Cerebral Performance Category score 4-6) occurred in 44 subjects (49%), including mortality in 30 subjects (34%). A model incorporating a four-level EEG Background Category (normal, slow-disorganized, discontinuous or burst-suppression, or attenuated-flat), stage 2 Sleep Transients (present or absent), and Reactivity-Variability (present or absent) had the highest AUC. Five-fold cross-validation for the optimal model predicting neurologic outcome indicated a mean AUC of 0.75 (range, 0.70-0.81) and for the optimal model predicting mortality indicated a mean AUC of 0.84 (range, 0.76-0.97). The specificity for unfavorable neurologic outcome and mortality were 95% and 97%, respectively. The positive predictive value for unfavorable neurologic outcome and mortality were both 86%. Conclusions: The specificity of the optimal model using a combination of early EEG features was high for unfavorable neurologic outcome and mortality in critically ill children after cardiac arrest. However, the positive predictive value was only 86% for both outcomes. Therefore, EEG data must be considered in overall clinical context when used for neuroprognostication early after cardiac arrest.
引用
收藏
页码:349 / 357
页数:9
相关论文
共 50 条
  • [1] Multimodal monitoring including early EEG improves stratification of brain injury severity after pediatric cardiac arrest
    Topjian, Alexis A.
    Zhang, Bingqing
    Xiao, Rui
    Fung, France W.
    Berg, Robert A.
    Graham, Kathryn
    Abend, Nicholas S.
    RESUSCITATION, 2021, 167 : 282 - 288
  • [2] Stability of Early EEG Background Patterns After Pediatric Cardiac Arrest
    Abend, Nicholas S.
    Xiao, Rui
    Kessler, Sudha Kilaru
    Topjian, Alexis A.
    JOURNAL OF CLINICAL NEUROPHYSIOLOGY, 2018, 35 (03) : 246 - 250
  • [3] Early Electroencephalographic Background Features Predict Outcomes in Children Resuscitated From Cardiac Arrest
    Topjian, Alexis A.
    Sanchez, Sarah M.
    Shults, Justine
    Berg, Robert A.
    Dlugos, Dennis J.
    Abend, Nicholas S.
    PEDIATRIC CRITICAL CARE MEDICINE, 2016, 17 (06) : 547 - 557
  • [4] Quantitative EEG predicts outcomes in children after cardiac arrest
    Lee, Seungha
    Zhao, Xuelong
    Davis, Kathryn A.
    Topjian, Alexis A.
    Litt, Brian
    Abend, Nicholas S.
    NEUROLOGY, 2019, 92 (20) : E2329 - E2338
  • [5] EEG Factors After Pediatric Cardiac Arrest
    Abend, Nicholas S.
    Wiebe, Douglas J.
    Xiao, Rui
    Massey, Shavonne L.
    Fitzgerald, Mark
    Fung, France
    Topjian, Alexis A.
    JOURNAL OF CLINICAL NEUROPHYSIOLOGY, 2018, 35 (03) : 251 - 255
  • [6] EEG for good outcome prediction after cardiac arrest: A multicentre cohort study
    Turella, S.
    Dankiewicz, J.
    Ben-Hamouda, N.
    Nilsen, Kb
    During, J.
    Endisch, C.
    Engstrom, M.
    Flugel, D.
    Gaspard, N.
    Grejs, A. M.
    Haenggi, M.
    Haffey, S.
    Imbach, L.
    Johnsen, B.
    Kemlink, D.
    Leithner, C.
    Legriel, S.
    Lindehammar, H.
    Mazzon, G.
    Nielsen, N.
    Peyre, A.
    Stanford, B. Ribalta
    Roman-Pognuz, E.
    Rossetti, A. O.
    Schrag, C.
    Valerianova, A.
    Wendel-Garcia, P.
    Zubler, F.
    Cronberg, T.
    Westhall, E.
    RESUSCITATION, 2024, 202
  • [7] Neurophysiological and neuroradiological multimodal approach for early poor outcome prediction after cardiac arrest
    Scarpino, Maenia
    Lanzo, Giovanni
    Lolli, Francesco
    Carrai, Riccardo
    Moretti, Marco
    Spalletti, Maddalena
    Cozzolino, Morena
    Peris, Adriano
    Amantini, Aldo
    Grippo, Antonello
    RESUSCITATION, 2018, 129 : 114 - 120
  • [8] Value of EEG reactivity for prediction of neurologic outcome after cardiac arrest: Insights from the Parisian registry
    Benghanem, Sarah
    Paul, Marine
    Charpentier, Julien
    Rouhani, Said
    Salem, Omar Ben Hadj
    Guillemet, Lucie
    Legriel, Stephane
    Bougouin, Wulfran
    Pene, Frederic
    Chiche, Jean Daniel
    Mira, Jean-Paul
    Dumas, Florence
    Cariou, Alain
    RESUSCITATION, 2019, 142 : 168 - 174
  • [9] Short-Term Outcome Prediction by Electroencephalographic Features in Children Treated with Therapeutic Hypothermia After Cardiac Arrest
    Kessler, Sudha Kilaru
    Topjian, Alexis A.
    Gutierrez-Colina, Ana M.
    Ichord, Rebecca N.
    Donnelly, Maureen
    Nadkarni, Vinay M.
    Berg, Robert A.
    Dlugos, Dennis J.
    Clancy, Robert R.
    Abend, Nicholas S.
    NEUROCRITICAL CARE, 2011, 14 (01) : 37 - 43
  • [10] Short-Term Outcome Prediction by Electroencephalographic Features in Children Treated with Therapeutic Hypothermia After Cardiac Arrest
    Sudha Kilaru Kessler
    Alexis A. Topjian
    Ana M. Gutierrez-Colina
    Rebecca N. Ichord
    Maureen Donnelly
    Vinay M. Nadkarni
    Robert A. Berg
    Dennis J. Dlugos
    Robert R. Clancy
    Nicholas S. Abend
    Neurocritical Care, 2011, 14 : 37 - 43