STRUCTURED INVERSION OF THE BERNSTEIN-VANDERMONDE MATRIX

被引:1
作者
Allen, Larry [1 ]
Kirby, Robert C. [1 ]
机构
[1] Baylor Univ, Dept Math, Waco, TX 76798 USA
关键词
Bernstein polynomials; Lagrange polynomials; Legendre polynomials; Bernstein-Vandermonde matrix; Bernstein mass matrix; interpolation; matrix inverse; Bezout matrix; Hankel matrix; Toeplitz matrix; conditioning; QUADRATURE;
D O I
10.1137/20M1336606
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Bernstein polynomials, long a staple of approximation theory and computational geometry, have also increasingly become of interest in finite element methods. Many fundamental problems in interpolation and approximation give rise to interesting linear algebra questions. When attempting to find a polynomial approximation of boundary or initial data, one encounters the Bernstein-Vandermonde matrix, which is found to be highly ill conditioned. In [L. Allen and R. C. Kirby, SIAM J. Matrix Anal. Appl., 41 (2020), pp. 413-431], we used the relationship between monomial Bezout matrices and the inverse of Hankel matrices to obtain a decomposition of the inverse of the Bernstein mass matrix in terms of Hankel, Toeplitz, and diagonal matrices. In this paper, we use properties of the Bernstein-Bezout matrix to factor the inverse of the Bernstein-Vandermonde matrix into a difference of products of Hankel, Toeplitz, and diagonal matrices. We also use the nonstandard matrix norm defined in [L. Allen and R. C. Kirby, SIAM J. Matrix Anal. Appl., 41 (2020), pp. 413-431] to study the conditioning of the Bernstein-Vandermonde matrix, showing that the conditioning in this case is better than in the standard 2 norm. Additionally, we use properties of multivariate Bernstein polynomials to derive a block LU decomposition of the Bernstein-Vandermonde matrix corresponding to equispaced nodes on the d-simplex.
引用
收藏
页码:557 / 577
页数:21
相关论文
共 19 条
[1]   COMPUTING THE BEZIER CONTROL POINTS OF THE LAGRANGIAN INTERPOLANT IN ARBITRARY DIMENSION [J].
Ainsworth, Mark ;
Sanchez, Manuel A. .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2016, 38 (03) :A1682-A1700
[2]   BERNSTEIN-BEZIER FINITE ELEMENTS OF ARBITRARY ORDER AND OPTIMAL ASSEMBLY PROCEDURES [J].
Ainsworth, Mark ;
Andriamaro, Gaelle ;
Davydov, Oleg .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2011, 33 (06) :3087-3109
[3]   STRUCTURED INVERSION OF THE BERNSTEIN MASS MATRIX [J].
Allen, Larry ;
Kirby, Robert C. .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2020, 41 (02) :413-431
[4]  
Burden RichardL., 2012, NUMERICAL METHODS, V4th
[5]  
Davis PJ, 1975, INTERPOLATION APPROX
[6]   OPTIMAL CONDITIONING OF BERNSTEIN COLLOCATION MATRICES [J].
Delgado, Jorge ;
Pena, J. M. .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2009, 31 (03) :990-996
[8]   Legendre-Bernstein basis transformations [J].
Farouki, RT .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2000, 119 (1-2) :145-160
[9]   TOTAL POSITIVITY AND NEVILLE ELIMINATION [J].
GASCA, M ;
PENA, JM .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1992, 165 :25-44
[10]  
GAUTSCHI W, 1983, LINEAR ALGEBRA APPL, V52-3, P293