The Ramsey numbers of paths versus wheels

被引:19
作者
Chen, YJ [1 ]
Zhang, YQ [1 ]
Zhang, KM [1 ]
机构
[1] Nanjing Univ, Dept Math, Nanjing 210093, Peoples R China
关键词
Ramsey number; path; wheel;
D O I
10.1016/j.disc.2004.10.017
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For two given graphs G(1) and G(2), the Ramsey number R (G(1), G(2)) is the smallest integer n such that for any graph G of order n, either G contains G(1) or the complement of G contains G(2). Let P-n denote a path of order n and W-m a wheel of order m + 1. In this paper, we show that R(P-n, W-m) = 2n - 1 for m even and n greater than or equal to m - 1 greater than or equal to 3 and R(P-n, W-m) = 3n - 2 for m odd and n greater than or equal to m - 1 greater than or equal to 2. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:85 / 87
页数:3
相关论文
共 6 条
[1]  
Dirac G. A., 1952, Proc. Lond. Math. Soc, V2, P69, DOI [10.1112/plms/s3-2.1.69, DOI 10.1112/PLMS/S3-2.1.69]
[2]  
Faudree R. J., 1974, Discrete Mathematics, V10, P269, DOI 10.1016/0012-365X(74)90122-8
[3]  
HARBORTH H, 1988, DISCRETE MATH, V73, P91
[4]  
Radziszowski S., 1994, AUSTRALAS J COMB, V9, P221
[5]  
RADZISZOWSKI SP, 2004, ELECT J COMBIN
[6]  
Surahmat E.T, 2001, P 12 AUSTR WORKSH CO, P174