EEG-based detection of the locus of auditory attention with convolutional neural networks

被引:76
作者
Vandecappelle, Servaas [1 ,2 ]
Deckers, Lucas [1 ,2 ]
Das, Neetha [1 ,2 ]
Ansari, Amir Hossein [2 ]
Bertrand, Alexander [2 ]
Francart, Tom [1 ]
机构
[1] Dept Neurosci, Expt Otorhinolaryngol, Leuven, Belgium
[2] Stadius Ctr Dynam Syst Signal Proc & Data Analyt, Dept Elect Engn ESAT, Leuven, Belgium
基金
欧洲研究理事会;
关键词
SELECTIVE ATTENTION; TRACKING; SPEECH; MOTION; BRAIN;
D O I
10.7554/eLife.56481
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
In a multi-speaker scenario, the human auditory system is able to attend to one particular speaker of interest and ignore the others. It has been demonstrated that it is possible to use electroencephalography (EEG) signals to infer to which speaker someone is attending by relating the neural activity to the speech signals. However, classifying auditory attention within a short time interval remains the main challenge. We present a convolutional neural network-based approach to extract the locus of auditory attention (left/right) without knowledge of the speech envelopes. Our results show that it is possible to decode the locus of attention within 1-2 s, with a median accuracy of around 81%. These results are promising for neuro-steered noise suppression in hearing aids, in particular in scenarios where per-speaker envelopes are unavailable.
引用
收藏
页数:17
相关论文
共 46 条
[1]   Deep convolutional neural network for the automated detection and diagnosis of seizure using EEG signals [J].
Acharya, U. Rajendra ;
Oh, Shu Lih ;
Hagiwara, Yuki ;
Tan, Jen Hong ;
Adeli, Hojjat .
COMPUTERS IN BIOLOGY AND MEDICINE, 2018, 100 :270-278
[2]   Automated EEG-based screening of depression using deep convolutional neural network [J].
Acharya, U. Rajendra ;
Oh, Shu Lih ;
Hagiwara, Yuki ;
Tan, Jen Hong ;
Adeli, Hojjat ;
Subha, D. P. .
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2018, 161 :103-113
[3]   Robust decoding of selective auditory attention from MEG in a competing-speaker environment via state-space modeling [J].
Akram, Sahar ;
Presacco, Alessandro ;
Simon, Jonathan Z. ;
Shamma, Shihab A. ;
Babadi, Behtash .
NEUROIMAGE, 2016, 124 :906-917
[4]  
Alickovic E, 2016, EUR SIGNAL PR CONF, P31, DOI 10.1109/EUSIPCO.2016.7760204
[5]  
[Anonymous], 2010, Commun. Surveys Tuts., DOI DOI 10.1038/nature14539
[6]   Neonatal Seizure Detection Using Deep Convolutional Neural Networks [J].
Ansari, Amir H. ;
Cherian, Perumpillichira J. ;
Caicedo, Alexander ;
Naulaers, Gunnar ;
De Vos, Maarten ;
Van Huffel, Sabine .
INTERNATIONAL JOURNAL OF NEURAL SYSTEMS, 2019, 29 (04)
[7]   Quiet sleep detection in preterm infants using deep convolutional neural networks [J].
Ansari, Amir Hossein ;
De Wel, Ofelie ;
Lavanga, Mario ;
Caicedo, Alexander ;
Dereymaeker, Anneleen ;
Jansen, Katrien ;
Vervisch, Jan ;
De Vos, Maarten ;
Naulaers, Gunnar ;
Van Huffel, Sabine .
JOURNAL OF NEURAL ENGINEERING, 2018, 15 (06)
[8]   Structured Pruning of Deep Convolutional Neural Networks [J].
Anwar, Sajid ;
Hwang, Kyuyeon ;
Sung, Wonyong .
ACM JOURNAL ON EMERGING TECHNOLOGIES IN COMPUTING SYSTEMS, 2017, 13 (03)
[9]   Impact of Different Acoustic Components on EEG-Based Auditory Attention Decoding in Noisy and Reverberant Conditions [J].
Aroudi, Ali ;
Mirkovic, Bojana ;
De Vos, Maarten ;
Doclo, Simon .
IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2019, 27 (04) :652-663
[10]  
Aroudi A, 2018, 2018 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), P851, DOI 10.1109/ICASSP.2018.8462278